期刊文献+

基于广义运动模糊模型的前向运动模糊核

Forward-Motion Blurring Kernel Based on Generalized Motion Blurring Model
下载PDF
导出
摘要 从光流场的角度出发,建立了一种广义运动模糊模型,并依据该模型推导出前向运动模糊核,为高速铁路前向运动视频图像去模糊奠定了理论基础.给出了理论分析后,设计了一种快速生成前向运动模糊核的方法,在这个过程中,解决了3个具体问题:快速的运动估计方法的解析解、平面场景朝向的快速估计方法的解析解、前向运动模糊核的数值生成方法.实验结果验证了该算法的正确性. In this paper, a generalized motion blurring model is constructed from the viewpoint of optical flow. Then based on the model forward motion blurring kernel is deduced. The kernel provides a theoretical foundation for forward motion deblurring of high speed railway from image sequences. A fast method is also designed to estimate forward motion blurring kernel on this theory. Three specific problems are solved in this process. First, the analytical solution under quick motion estimation method is obtained. Next, the analytical solution under quick motion estimation method of planar scene direction is achieved. Lastly, the numerical calculation algorithm of forward motion blurring kernel is developed. Experimental results validate the proposed method.
出处 《软件学报》 EI CSCD 北大核心 2016年第8期2135-2146,共12页 Journal of Software
基金 国家自然科学基金(61272354 61273364 61300176 61473031 61472029) 北京市自然科学基金(4152042) 中央高校基本科研业务费专项资金(2013JBM019)~~
关键词 图像模糊 非一致卷积核 光流 无源导航 模糊核 image blurring non-uniformed convolutional kernel optical flow passive navigation blurring kernel
  • 相关文献

参考文献21

  • 1Bertero M, Boccacci P. Introduction to Inverse Problems in Imaging. London: CRC Press, 1998.50-74.
  • 2Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1):259-268. [doi: 10.1016/0167-2789(92)90242-F].
  • 3Levin A, Weiss Y, Durand F, Freeman WT. Understanding and evaluating blind de-convolution algorithms. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2009). Miami: IEEE, 2009. 1964-1971. [doi: 10.1109/CVPR.2009.5206 815].
  • 4Cho S, Lee S. Fast motion deblurring. ACM Trans. on Graphics, 2009,28(5):145. [doi: 10.1145/1618452.1618491].
  • 5Fusco T, Conan JM, Mugnier LM, Michau V, Rousset G. Characterization of adaptive opticspoint spread function for anisoplanatic imaging. Application to Stellar Field Deconvolution, Astronomy and Astrophysics Supplement Series, 2000,142(1):149-156. [doi: 10.1051/aas:2000145].
  • 6Whyte O, Sivic J, Zisserman A, Ponce J. Non-Uniform deblurring for shaken images. Int'l Journal of Computer Vision, 2012,98(2): 168-186. [doi: 10.1007/s11263-011-0502-7].
  • 7Portz T, Zhang L, Jiang H. Optical flow in the presence of spatially-varying motion blur. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2012). Providence: IEEE, 2012.1752-1759. [doi: 10.1109/CVPR.2012.6247871 ].
  • 8Gupta A, Joshi N, Zitnick L, Cohen M, Curless B. Single image deblurring using motion density functions. In: Proe. of the European Conf. on Computer Vision (ECCV). Heidelberg: Springer-Verlag, 2010. 171-184. [doi: 10.1007/978-3-642-15549-9_ 13].
  • 9Hirsch M, Schuler C J, Harmeling S, Scholkopf B. Fast removal of non-uniform camera shake. In: Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). Barcelona: IEEE, 2011.6-13. [doi: 10.1109/ICCV.2011.6126276].
  • 10Zheng S, Xu L, Jia J. Forward motion deblurring. In: Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). Sydney: IEEE, 2013. 1465-1472. Idol: 10.1109/ICCV.2013.185].

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部