期刊文献+

热等静压TiC_p/30CrNi4Mo钢基复合材料的组织与性能

Microstructure and properties of TiC_p/30CrNi4Mo steel-based composites prepared by hot isostatic press
下载PDF
导出
摘要 采用球磨与热等静压相结合的方法制备TiC_p/30Cr Ni4Mo钢基复合材料,研究材料的显微组织、密度、硬度、常温和高温拉伸性能以及摩擦磨损性能。结果表明,TiC_p/30Cr Ni4Mo钢基复合材料的组织均匀细小,基体组织主要为细片状珠光体、铁素体和少量残余奥氏体,Ti C颗粒弥散分布在基体上,与基体结合牢固;复合材料的相对密度高达99.7%,硬度为49 HRC,抗拉强度高达1 266 MPa,伸长率为4.0%;复合材料具有较好的高温力学性能,400℃时复合材料抗拉强度仍高达1 135 MPa;在200 N载荷条件下,复合材料的耐磨损性能较原30Cr Ni4Mo材料提高约4倍,磨损形式主要表现为轻微的磨粒磨损;复合材料经950℃水淬和520℃回火后,抗拉强度高达1 325 MPa,伸长率为4.6%。 TiCp/30CrNi4Mo steel-based composites were prepared by ball milling and hot isostatic press (HIP). The physical and mechanical properties, including density, hardness, tensile strength at room temperature and high temperature, and wear resistance of composites were investigated. Results show that the composite has fine microstructure with uniform distribution of TiC particles. The TiC particles have a good bonding with the matrix which composed of pearlite, ferrite and a little residual austenite. The relative density, tensile strength, elongation and hardness of the composite are 99.7%, 1 266 MPa, 4.0% and 49 HRC, respectively. The tensile strength of the composite still reaches 1 135 MPa at 400℃, showing good high temperature mechanical property. The wear resistance of the composite increases by 4 times compared with 30CrNi4Mo steel under a load of 200 N. The strength and elongation of the composite reach 1325 MPa and 4.6% after water quenching at 950℃ and tempering at 520℃.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2016年第4期534-540,共7页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(51274103) 广东省科技计划项目(2013B010403001 2015A030312003)
关键词 热等静压 TIC颗粒 复合材料 力学性能 热处理 hot isostatic press TiC particulate composites mechanical property heat treatment
  • 相关文献

参考文献15

  • 1杨涛林,陈跃.颗粒增强金属基复合材料的研究进展[J].铸造技术,2006,27(8):871-873. 被引量:22
  • 2章林,刘芳,李志友,周科朝.颗粒增强型铁基粉末冶金材料的研究现状[J].粉末冶金材料科学与工程,2004,9(2):138-144. 被引量:7
  • 3ZHANG Lin, LIU Fang, LI particulate reinforced steel Science and Engineering of 138-144. Zhiyou, et al. Development of matrix composite[J]. Materials Powder Metallurgy, 2004, 9(2):.
  • 4李小强,李子阳,敖敬培,郑东海,屈盛官.纳米WC颗粒增强高铬铁基粉末冶金材料的制备[J].粉末冶金材料科学与工程,2014,19(4):615-621. 被引量:6
  • 5PAGOUNIS E, LINDROOS V K. Processing and properties of particulate reinforced steel matrix composites[J]. Materials Science and Engineering A, 1998, 246: 221-234.
  • 6PAGOUNIS E, TALVITIE M, LINDROOS V K. Influence of the metal/ceramic interface on the microstructure and mechanical properties of HIPed iron-based composites[J]. Composites Science and Technology, 1996, 54: 1329-1337.
  • 7NI Z F, SUN Y S, XUE F, et al. Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate[J] Materials and Design, 2011, 32: 1462-1467.
  • 8AKHTAR F, GUO S J. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites[J]. Materials Characterization, 2008, 59: 84-90.
  • 9BACON D H, EDWARDS L, FITZPATRICKET M E, et al. Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride[J]. International Journal of Fatigue, 2013, 48: 39-47.
  • 10BANDYOPADHYAY T K, DAS K. Synthesis and characterization of TiC-reinforced iron-based composites Part II: on mechanical characterization[J]. Journal of Material Science, 2004, 39: 6503-6508.

二级参考文献55

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部