期刊文献+

Mn含量对Cu-Mn合金结构与性能的影响 被引量:2

Effect of Mn content on microstructure and properties of Cu-Mn alloys
下载PDF
导出
摘要 基于Cu-Mn中间层可改善Cu与CuCrZr合金的连接性能,采用高能球磨法制备Cu-Mn合金粉末,研究烧结温度为650~850℃、Mn含量(质量分数)为10%~50%的Cu-Mn合金的烧结性能。结果表明:随Mn含量增加, Cu-Mn 合金的相对密度和抗拉强度先增大后减小,但 Mn 含量过高时生成较多的 MnO,导致合金性能下降;随烧结温度升高,合金的相对密度和抗拉强度增大。850℃下烧结的67Cu-33Mn合金孔隙较小、组织均匀,其相对密度和抗拉强度均达到最大值,分别为91.62%和610.91 MPa,表明67Cu-33Mn合金具有最佳的烧结活性,宜作为Cu与CuCrZr合金连接的中间层。 In order to improve the bonding properties of Cu to CuCrZr, Cu-Mn alloys with Mn mass fraction of 10%?50% were prepared by high energy ball milling and solid-phase sintering (650?850℃). The effects of Mn content on sintering properties of Cu-Mn were studied. The results show that the relative density and strength of the Cu-Mn alloy increases, and then decreases with increasing the Mn content; With further increase of Mn content, more MnO phase appears, which results in the properties of Cu-Mn alloy decreasing. With increasing sintering temperature, the relative density and tensile strength of the Cu-Mn alloy increase. When being sintered at 850℃, the optimum properties of 67Cu-33Mn alloy with homogenous microstructure and small pores are obtained, the maximum values of relative density and tensile strength are 91.62% and 610.91 MPa, respectively. Therefore, 67Cu-33Mn alloy can be used as the interlayer between Cu and CuCrZr alloy.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2016年第4期541-545,共5页 Materials Science and Engineering of Powder Metallurgy
基金 国家磁约束核聚变能发展研究专项(2014GB115001) 国家自然科学基金重点项目(51534009) 教育部博士点基金资助项目(20130162130002)
关键词 MN 含量 Cu-Mn合金 CUCRZR合金 显微结构 密度 抗拉强度 Mn content Cu-Mn alloy CuCrZr alloy microstructure density tensile strength
  • 相关文献

参考文献19

  • 1GWON H, TAKEUCHI Y, KASADA R, et al. Evaluation of heat transfer by sublimation for the application to the divertor heat sink for high fusion energy conversion[J]. Fusion Engineering and Design, 2014, 89(7): 1003-1008.
  • 2LIPA M, DUROCHER A, TIVEY R, et al. The use of copper alloy CuCrZr as a structural material for actively cooled plasma facing and in vessel components[J]. Fusion engineering and Design, 2005, 75: 469-473.
  • 3AUTISSIER E, RICHOU M, BERNARD F, et al. Design optimization of plasma facing component with functional gradient material Cu/W interlayer[J]. Fusion Engineering and Design, 2013, 88(9): 1714-1717.
  • 4SONG Jiupeng, YU Yang, ZHUANG Zhigang, et al. Preparation of W-Cu functionally graded material coated with CVD-W for plasma-facing component[J]. Journal of Nuclear Materials, 2013, 442(1/3): $208-$213.
  • 5LITUNOSKY N, ALESEENKO E, MAKHANKOV A, et al. Development of the armoring technique for ITER divertor dome[J] Fusion Engineering and Design, 2011, 86(9): 1749- 1752.
  • 6范景莲,杨树忠,刘涛,周强.W-Cu复合材料与Cu的扩散连接工艺[J].粉末冶金材料科学与工程,2015,20(2):182-186. 被引量:6
  • 7GOOGS S H, PUSKAR J D. Solid state bonding of CuCrZr to 316L stainless steel for ITER applications[J]. Fusion Engineering and Design, 2011, 86(9): 1634-1638.
  • 8BATRAI S, KALE G B, SAHA T K, et al. Diffusion bonding of a Cu-Cr-Zr alloy to stainless steel and tungsten using nickel as an interlayer[J]. Materials Science and Engineering A, 2004, 369(1): 119-123.
  • 9KHIRWADKAR S S, S1NGH K P, PATIL Y, et al. Fabrication and characterization of tungsten and graphite based PFC for divertor target elements of ITER like tokamak application[J]. Fusion Engineering and Design, 2011, 86(9): 1736-1740.
  • 10LIU X, LIAN Y Y, CHEN L, et al. Tungsten joining with copper alloy and its high heat load performance[J]. Journal of NuclearMaterials, 2014, 455(1): 382-386.

二级参考文献57

共引文献33

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部