期刊文献+

基于分层随机梯度辨识算法的传感器故障检测方法 被引量:2

Sensor Fault Detection Based on Hierarchical Stochastic Gradient Identification Algorithm
下载PDF
导出
摘要 提出一种基于两阶段递推随机梯度参数辨识的传感器故障的在线检测方法.相对于最小二乘参数辨识算法,随机梯度参数辨识算法所需计算量更小.针对计算能力受限的系统,提出基于随机梯度参数辨识的检测算法.通过分析可知,参数辨识精度越高时检测精度越高.为提高精度,给出基于两阶段递推随机梯度参数辨识的检测算法并设计基于最新估计信息的残差.除此之外,还给出新的检测算法与原有的基于最小二乘检测算法计算量的对比分析,并通过仿真实例,证明新的检测算法的优越性及有效性. A fault detection method based on hierarchical stochastic gradient algorithm is presented for sensor fault. Compared with the least-square identification algorithms, stochastic gradient(SG) identifi- cation algorithm has less computational load. The fault detection method is proposed based on stochastic gradient algorithm for the system with limited computing power. The analysis reveals that the higher esti- mation accuracy of identification algorithm, the higher estimation accuracy of detection method. To im- prove the accuracy, the hierarchical identification principle is used firstly, and then the unknown true pa- rameters of residual are replaced by the latest estimation. The calculation loads analysis of the proposed algorithm is given. In addition, a simulation example is employed to show the advantage of the proposed approach in sensor fault detection.
出处 《空间控制技术与应用》 CSCD 北大核心 2016年第4期12-17,共6页 Aerospace Control and Application
基金 国家杰出青年科学基金资助项目(61525301)
关键词 分层随机梯度 传感器故障 故障检测 hierarchical stochastic gradient sensor fault fault detection
  • 相关文献

参考文献13

  • 1ZHOU D H, WANG G Z. Chapter 5 review of fault di- agnosis technology[ J]. Control and Instrument in Chem- ical Industry. 1998, 25( 1 ) : 58-62.
  • 2WANG Y, ZHENG Y, FANG H, et al. ARMAX model based run-to-run fault diagnosis approach for batch man- ufacturing process with metrology delay[ J]. Internation- al Jourual of Production Research, 2014, 52 (10): 2915 -2930.
  • 3SIMANI S, FANTUZZI C. Fault diagnosis in power plant using neural networks [ J]. Information Sciences, 2000, 127(3): 125-136.
  • 4MCBAIN J, TIMUSK M. System identification for fault detection in variable speed and load machinery[ J]. In- ternational Journal of Condition Monitoring, 2012, 2 ( 2 ) : 32-39.
  • 5ZHAI S, WANG W, YE H. Fault diagnosis based on parameter estimation in closed-loop systems[ J]. Control Theory & Applications, IET, 2014, 9(7) : 1146-1153.
  • 6MOHAMMADPOUR J, GRIGORIADIS K, FRANCHEK M, et al. Real-time diagnosis of the exhaust recircula- tion in diesel engines using least-squares parameter esti- mation[ J ]. Journal of dynamic systems, measurement, and control, 2010, 132(1) : 011009.
  • 7WU A G, FU F Z, TENG Y. Latest estimation based recursive stochastic gradient identification algorithms for ARX models [ C ]//The 34'h Control Conference (CCC) , New York: IEEE, 2015.
  • 8DING F, CHEN T. Performance analysis of multi-inno- vation gradient type identification methods [ J ]. Auto- matica, 2007, 43 ( 1 ) : 1-14.
  • 9WU D, LI Y. Fault diagnosis of variable pitch for wind turbines based on the multi-innovation forgetting gradient identification algorithm [ J ]. Nonlinear Dynamics, 2015, 79(3) : 2069-2077.
  • 10WU A G, DONG R Q, FU F Z. Weighted stochastic gradient identification algorithms for ARX models [ J ]. IFAC-PapersOnLine, 2015, 48 (28) : 1076-108.

共引文献69

同被引文献29

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部