期刊文献+

基于群正则化相似性度量的人脸识别方法

Face Recognition Based on Cohort Normalization Similarity
下载PDF
导出
摘要 安全监控应用中,受光照、阴影和运动模糊等影响,通过人脸检测算子检测到的图像可能包含不完整的人像信息,严重影响到识别的精度。提出一种人脸选择算法,从给定的候选人像集合中选择一个高质量人像的子集,然后应用基于集合的人像识别算法进行识别,有效地提高识别的精度。在公开的人脸识别数据库Honda/UCSD和Choke Point的实验结果显示,使用子集选择的算法能明显提高现有基于集合的人像识别算法的精度。 In surveillance applications, face images captured with different illumination, shadowing, and motion blur over the sequence, the snapshot may contain non-face or incomplete face component. Addresses the problem of face recognition with an image set-based approach.The proposed method is more robust. It doesn't need an alignment of the face. It automatically selects high-quality images for face recognition during testing and training. Experimental results on the shared video database Honda/UCSD and Choke Point show that the proposed framework method has been promising potential for use in the image set-based automatic face recognition applications.
作者 曾青松
出处 《现代计算机(中旬刊)》 2016年第7期54-58,共5页 Modern Computer
基金 广东省自然科学基金(No.2015A030313807)
关键词 人脸识别 局部二值模式 集合匹配 子集选择 Face Recognition Local Binary Pattern Image Set Matching Subset Selection
  • 相关文献

参考文献18

  • 1Shan C. Face Recognition and Retrieval in Video[J]. Video Search and Mining,Springer,2010: 235-260. doi:10.1007/978-3-642- 12900-19.
  • 2Nasrollahi K,Moeslund T B. Face Quality Assessment System in Video Sequences[J]. Biometrics and Identity Management, Springer, 2008: 10-18. doi:10.1007/978-3-540-89991-42.
  • 3Ojala T, Pietikainen M, Harwood D. A Comparative Study of Texture Measures with Cassification Based on Featured Distributions[J]. Pattern Recognition, 1996, 29( 1 ): 51-59. doi:10.1016/0031-3203(95)00067-4.
  • 4Zhang B, Gao Y, Zhao S, et al. Local Derivative Pattern Versus Local Binary Pattern: Face Recognition with High-Order Local Pat- tern Descriptor[J]. IEEE Transactions on Image Processing,IEEE,2010,19(2): 533-544.
  • 5Liao S, Zhu X, Lei Z, et al. Learning Multi-scale Block Local Binary Patterns for Face Recognition[C]. Advances in Biometrics, In- ternational Conference. Seoul,Korea: Springer,2007,4642: 828-837.
  • 6Guo Z, Zhang L, Zhang D, et al. Hierarchical Multiscale LBP for Face and Palmprint Recognition[C]. Proceedings of the International Conference on Image Processing. Hong Kong,China: IEEE, 2010: 4521-4524. doi:10.1109/ICIP.2010.5653119.
  • 7Jin R, Wang S ,Zhou Z. Learning a Distance Metric from Muhi-Instance Multi-Label Data[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009:896 - 902. doi:10.1109/CVPRW.2009.5206684.
  • 8Wolf L, Hassner T, Maoz 1. Face Recognition in Unconstrained Videos with Matched Background Similarity[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011: 529-534. doi: I0.1109/CVPR. 2011.5995566.
  • 9Wong Y, Chen S, Man S, et al. Patch-Based Probabilistie Image Quality Assessment for Face Selection and Improved Video-Based face Recognition[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop. Colorado Springs, CO, USA: IEEE, 2011: 74-81.
  • 10Finan R A, Sapeluk A T, Damper R I. Impostor Cohort Selection for Score Normalisation in Speaker Verification[J]. Pattern Recogni- tion Letters, 1997,18(9): 881-888.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部