期刊文献+

地铁隧道地表变形小波去噪及灰色-时序组合预测模型研究 被引量:8

Study on Surface Deformation Wavelet De-noising of Subway Tunnel and Combined Prediction Model with Gray and Time Series
下载PDF
导出
摘要 以青岛地铁3号线地表变形横向观测线实测数据为例,开展小波去噪及时序组合预测模型的研究。首先,采用小波理论对观测值进行粗差剔除与去噪处理,根据均方误差最低、信噪比最高的原则,证实dmey小波1层分解、rigrsure软阈值小波去噪方法是最优的。其次,给出地铁隧道地表变形灰色-时序组合预测模型表达式,选用等维新息GM(1,1)模型和残差时间序列模型进行地表变形叠合预测。最后,通过小波去噪后时间序列预测模型、小波去噪前灰色-时序组合预测模型、小波去噪后灰色-时序组合预测模型进行计算分析,结果表明小波去噪后灰色-时序组合模型预测精度最高,并分析了各模型预测精度差别的成因。 Taking measured data of surface deformation transverse observation line of Qingdao Metro Line 3as an example,this paper studies a wavelet de-noising combined model.First,we use wavelet theory to eliminate observation value errors.According to the principle of lowest mean square error and highest signal to noise ratio,the calculated results show that dmey wavelet decomposition and rigrsure soft threshold wavelet de-noising are optimal.Second,we present the surface deformation predicting model expression combined with gray and time series of the subway tunnel.The settlement value GM(1,1)model and residual time series model are selected to predict surface deformation.Last,we analyze and compare the wavelet de-noising time series model and the combined wavelet denoising gray and time series prediction model,both pre and post.The results show the post wavelet de-noising gray and time series combined model has the highest prediction accuracy.We analyze the different causes of each model.
出处 《大地测量与地球动力学》 CSCD 北大核心 2016年第8期678-681,共4页 Journal of Geodesy and Geodynamics
关键词 地铁隧道地表变形 小波去噪 灰色-时序组合预测模型 精度分析 surface deformation of subway tunnel wavelet de-noising combined predict model with gray and time series accuracy analysis
  • 相关文献

参考文献13

  • 1潘国荣.基于时间序列分析的动态变形预测模型研究[J].武汉大学学报(信息科学版),2005,30(6):483-487. 被引量:47
  • 2刘陶胜,黄声享,李沛鸿.基于双极差的粗差探测方法研究[J].大地测量与地球动力学,2012,32(1):80-83. 被引量:7
  • 3郑作亚,黄城,卢秀山.小波分析对GPS局部地表动态变形监测的数据处理[C].大地测量与地球动力学进展,武汉,2004.
  • 4Zheng Zuoya, Huang Cheng, Lu Xiushan. The Data Process- ing of GPS Local Dynamic Observation with Wavelet Analysis[J]. Advances in Geodesy and Geodynamics, Wuhan, 2004.
  • 5吴云龙,罗志才,李辉,钟波.基于小波收缩阈值降噪的卫星重力梯度数据粗差探测方法[J].大地测量与地球动力学,2010,30(4):55-58. 被引量:7
  • 6LuanYuanzhong,CaoDingtao,Xu Lenian, et al. Deformation Observation and Dynamic Pre diction [M]. Beijing: China Meteorological Press, 2001.
  • 7DuChao.Research0171Data Processing and Prediction Model of Ground Deformation of Sub- way Tunnel Induced by Shield Construction [ D]. Qingdao:Shandong University of Science and Technology, 2015.
  • 8WangJianbo.WaveletTrans-form with Applications in Data Processing of Bridge's De formation Observation [D]. Qingdao:Shandong University of Science and Technology, 2011.
  • 9ZhengZhizhen.WaveletTransformand Application in MATLAB Tools[M]. Beijing: Seismologi cal Press, 2001.
  • 10王建波,刘娜,聂文志.小波去噪在矿区变形监测数据处理中的应用[J].山东科技大学学报:自然科学版,2010,29(增刊):310-313.

二级参考文献31

共引文献64

同被引文献70

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部