期刊文献+

基于自适应卡尔曼的时域增强算法研究

Research on time domain enhancement algorithm based on adaptive Kalman filter
下载PDF
导出
摘要 在图像序列进行压缩感知重构的过程中,基于运动补偿的分块压缩感知重建算法利用了帧间残差图像的稀疏特性,有效提高了重构视频的质量。但该算法仅在空域对图像进行了维纳滤波,帧间存在抖动现象,视频主观质量较差。文章将自适应卡尔曼滤波算法应用到分块压缩感知重建算法的重建过程中,可以有效地去除视频帧间的噪声,使得图像的主观质量得到了改善。 In the process of compressed sensing reconstruction for image sequence,block compressed sensing reconstruction algorithm based on the motion compensation effectively improved the quality of the reconstructed video frames by utilizing the characteristics of inter sparse residual image. But this algorithm just utilized Wiener filtering in the spatial domain, and for the inter jitter existed, the reconstructed video frames had a little bit poor subjective quality. In this paper,an adaptive Kalman filter algorithm is applied to block compressed sensing reconstruction algorithm in the reconstruction process,which effectively removes the noise between image frames and makes better subjective quality.
出处 《信息技术》 2016年第8期9-13,共5页 Information Technology
基金 国家自然科学青年基金(61101226)
关键词 压缩重构 分块压缩感知重建 视频主观质量 时域增强 自适应卡尔曼滤波 compression reconstruction block compressed sensing reconstruction subjective video quality temporal enhancement adaptive Kalman filter
  • 相关文献

参考文献4

二级参考文献34

  • 1许明,刘建业,袁信.自适应卡尔曼滤波在惯导初始对准中的应用研究[J].中国惯性技术学报,1999,7(3):15-17. 被引量:22
  • 2宋迎春.GPS动态导航定位的当前统计模型与自适应滤波[J].湖南人文科技学院学报,2005,22(5):7-9. 被引量:9
  • 3Donoho D. Compressed sensing [J]. IEEE Transactions on Information Theory(S0018-9448), 2006, 52(4): 1289-1306.
  • 4Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory(S0018-9448), 2006, 52(2): 489-509.
  • 5Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SlAM Journal on Scientific Computing(S1064-8275), 1999, 20(1): 33-61.
  • 6Figueiredo M, Nowak R, Wright S. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J]. IEEE Selected Topics in Signal Processing(S1932-4553), 2007, 1(4): 586-597.
  • 7Candes E J, Romberg J. Practical Signal Recovery from Random Projections [J]. Proc. of SPIE(S0277-786X), 2005, 5419: 76-86.
  • 8Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Communications on Pure and Applied Mathematics(S0010-3640), 2004, 57(11): 1413-1457.
  • 9Selesnick W, Sendur L. Video denoising using 2D and 3D dual-tree complex wavelet transforms [J]. Proc. of SPIE (S0277-786X), 2005, 5207:607-618.
  • 10Li-Wei Kang, Chun-Shien Lu. Distributed compressive video sensing [C]//IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, April 19-24, 2009: 1169-1172.

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部