期刊文献+

含裂纹复合材料的Cell-based光滑扩展有限元法 被引量:2

Cell-based Smoothed Extended Finite Element Method for Composite Materials with Cracks
下载PDF
导出
摘要 为克服有限元法(FEM)某些固有的缺陷,提高计算精度,将Cell-Based光滑有限元法(CSFEM)与扩展有限元法(XFEM)相结合,提出光滑扩展有限元法(CS-XFEM).用该方法对含中心裂纹和斜裂纹的正交各向材料板进行模拟,并与FEM,XFEM和BXFEM(bimaterial extended finite element method)计算结果进行对比.数值算例结果表明,CS-XFEM兼具CSFEM和XFEM两者优点:单元网格与裂纹面相互独立,裂尖不必是单元节点,裂尖处网格也不需要加密,域内积分可转化为边界积分,形函数不需求导,对网格质量要求低;因此是分析断裂问题的简洁高效的数值计算方法. To overcome some inherent flaws and improve accuracy of the finite element method(FEM),a novel numerical method called cell-based smoothed extended finite element method(CS-XFEM) was presented.It combined the cell-based smoothed finite element method(CSFEM) and the extended finite element method(XFEM).The CS-XFEMwas used to simulate an orthotropic plate containing center crack or inclined crack,and then was compared with FEM,XFEMand bimaterial extended finite element method(BXFEM).The result shows that the CS-XFEMhas the advantages of both the CSFEMand XFEM: the meshes are independent to the crack surface; the end of crack needn't to be a node and the meshes around the end needn't to be fined; the CS-XFEMcan transform domain integration into boundary integration,therefore,the derivatives of the shape functions are not needed and the mesh size needn't to be regular.The CS-XFEMis a simple and efficient numerical method to analyze fracture problems.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第8期1127-1132,共6页 Journal of Northeastern University(Natural Science)
基金 国家重大科学仪器设备开发专项(2012YQ030075) 国家自然科学基金资助项目(51305157) 吉林省科技厅基金资助项目(20160520064JH)
关键词 数值计算 光滑扩展有限元法 正交各向异性 扩展有限元法 应力强度因子 numerical calculation CS-XFEM orthotropic XFEM stress intensity factor
  • 相关文献

参考文献2

二级参考文献27

  • 1NICOLAS MOES,JOHN DOLBOW,TED BELYTSCHKO.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
  • 2WELLS G N,SLUYS L J.A new method of modeling cohesive cracks using finite elements[J].International Journal for Numerical Methods in Engineering,2001,50(12):2667-2682.
  • 3WELLS G N,SLUYS L J,DE BORST R.Simulating the propagation of displacement discontinuities in a regularized strain-softening medium[J].International Journal for Numerical Methods in Engineering,2002,53(5):1235-1256.
  • 4SUKUMAR N,HUANG Z Y,H.PP(E)VOST J,et al.Partition of unity enrichment for bimaterial interface cracks[J].International Journal for Numerical Methods in Engineering,2004,59(8):1075-1102.
  • 5CHESSA JACK,SMOLINSKI PATRICK,BELYTSCHKO TED.The extended finite element method(XFEM)for solidification problems[J].International Journal for Numerical Methods in Engineering,2002;53(8):1959-1977.
  • 6GERSTENBERGER A,WALL W A.An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction[J].Computer Methods in Applied Mechanics and Engineering,2008,197(19-20):1699-1714.
  • 7DOLBOW JOHN,MO(E)S NICOLAS,BELYTSCHKO TED.An extended finite element method for modeling crack growth with frictional contact[J].Computer Methods in Applied Mechanics and Engineering,2001,190(51-52):6825-6846.
  • 8LIU FUSHEN,BORIA RONALDO I.A contact algorithm for frictional crack propagation with the extended finite element method[J].International Journal For Numerical Methods in Engineering,2008,76(10):1489-1512.
  • 9KHOEI A R,NIKBAKHT M.An enriched finite element algorithm for numerical computation of contact friction problems[J].International Journal of Mechanical Sciences,2007,49(2):183-199.
  • 10MO(E)S N,GRAVOUIL A,BELYTSCHKO T.Nonplanar 3D crack growth by the extended finite element and level sets-part Ⅱ:Level set update[J].International Journal for Numerical Methods in Engineering,2002,53(11):2569-2586.

共引文献84

同被引文献32

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部