期刊文献+

基于视觉特征的书法风格识别 被引量:3

Calligraphy Style Identification Based on Visual Features
下载PDF
导出
摘要 纸质图书和书法书籍的数字化及网络传播,方便书法学术的研究和书法爱好者的使用。为了对书法风格进行识别,提出基于特征书法风格分类方法:首先,对单字图像进行特征提取。接着,用爬虫技术,将单字转化为笔画,提取笔画特征。然后,将提取的24类特征作为特征向量,构造风格模型。最后,提取用户提交样本图的风格特征,与五类风格进行相似性比较,将样本字归属为概率最大的风格类型。 The digitalization of calligraphy paper books enables convenient use for academic researchers and calligraphy learners. Identifies the cal-ligraphy style by extracting and modeling calligraphy image features in character level and stroke level: Firstly extracts characters features. Second, extracts features of stroke by the crawler and stroke features are extracted. Totally, 24 style features are used as the feature vector, when a user submits an unknown character, its 24 style features are extracted and compared with those features of 5 styles in the database five styles eventually, the style which has the biggest similarity probability assigned to the unknown.
出处 《现代计算机》 2016年第14期39-46,共8页 Modern Computer
关键词 书法风格 风格识别 视觉特征 风格量化 Calligraphy Style Style Identification Visual Features Style Quantification
  • 相关文献

参考文献16

  • 1CADAL书法.http://www.cadal.zju.edu.aN.访问日期:2015年9月28日.
  • 2全球数字图书馆.http://www.ulib.org.访问日期:2015年9月28日.
  • 3巨保铭.汉字书法风格浅析[J].沧桑,2008,0(5):237-238. 被引量:1
  • 4曹云鹏.历代书法风格转换与书法创新分析[J].艺术百家,2012,28(S2):281-282. 被引量:3
  • 5Graphology: to Handwriting,with full Explanation of the Science, and Many Examples Fully Clifford. How Read Character from Analyzed ,Penn Pub. Co. ,Philadelphia, 1905.
  • 6K. Hanusiak R, S. Oliveira L, Justino E, et al. Writer Verification Using Texture-Based Features[J]. Document Analysis & Recogni- tion,2012,15(3):213-226.
  • 7Mori S, Suen C.Y., Yamamoto K. Historical Review of OCR Research and Development[J]. Proc. IEEE., 1992,80(7):1029-1058. .
  • 8X. Zhang, G. Nagy. Style Comparisons in Calligraphy, Procs. SPIE/IST/DRR, San Francisco, Jan, 2012.
  • 9Han C C, Chou C H, Wu C S. An Interactive Grading and Learning System for Chinese Calligraphy[J]. Machine Vision and Applica- tions,2008,19(I ): 43-55.
  • 1001L. Yang and L. Peng. Local Projection-Based Character Segmentation Method for Historical Chinese Documents. Proc. SPIE8658,865800, 2014.

二级参考文献11

  • 1Liu K, Huang Y S, Suen C Y. Identification of fork points on the skeletons of handwritten Chinese characters [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (10) : 1095- 1100.
  • 2Liao C W, Huang J S. Stroke segmentation by Bemstein-Bezier curve fitting [ J]. Pattern Recognition, 1990, 23 (5) : 475 -484.
  • 3Liu C L, Kim 1 J, Kim J H. Model-based stroke extraction and matching for handwritten Chinese character recognition [ J ]. Pattern Recognition, 2001, 34 ( 11 ) : 2339 - 2352.
  • 4Fan K C, Wu W H. A run-length-coding-based approach to stroke extraction of Chinese characters [ J ]. Pattern Recognition, 2000,33 (11): 1881 -1895.
  • 5Lee C N, Wu B. Chinese-character-stroke-extraction algorithm based on contour information [ J ]. Pattern Recognition, 1998,31 (6) : 651 663.
  • 6L' Homer E. Extraction of strokes in handwritten characters [ J ].Pattern Recognition, 2000, 33 (7) : 1147 - 1160.
  • 7Kegl B, Krzyzak A. Piecewise linear skeletonization using principal curves [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (1) : 59 - 74.
  • 8He R, Yan H. Stroke extraction as pre-processing step to improve thinning results of Chinese characters [ J ]. Pattern Recognition Letters, 2000, 21 (9) : 817 -825.
  • 9代静.浅谈当代书法创新之路[J].大众文艺(学术版),2012(9):125-126. 被引量:1
  • 10陆建祥.论书法艺术的传承和创新[J].大众文艺(学术版),2012(11):58-59. 被引量:1

共引文献10

同被引文献11

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部