摘要
针对一类含有执行器失效故障和范数有界不确定性的系统,提出了一种鲁棒容错跟踪控制设计方法。该方法利用有界实引理,给出了保证闭环系统稳定且满足鲁棒性能要求的线性矩阵不等式(LMI)的表达式;为了削弱控制器的保守性,使用不同的Lyapunov变量对应不同的系统状态;由此带来的非凸优化问题,发展了一种迭代线性矩阵不等式算法。考虑到该迭代算法的收敛性取决于初值的选择,经过推导给出了一种求解合适初值的算法。将该算法应用于高超声速飞行器X-33跟踪控制器的设计,仿真结果表明本文算法是可行和有效的。
For the systems with norm-bounded parameter uncertainty and actuator failure faults,a robust fault-tolerant tracking control method is presented. In this method,the linear matrix inequalities( LMI) which guarantee the stability of the closed-loop system and meet the demand of the robust performance were derived utilizing the bounded real lemma. In order to reduce the conservativeness of the designed controller,the different Lyapunov variables were adopted under different system fault states. An iterative LMI algorithm is developed to solve the resulting non-convex optimization problem caused by the use of different Lyapunov variables.Since the convergence of the iterative algorithm lies on the choice of the initial values,an efficient way to find a good initial value was given after derivation. The method was applied to the design of the hypersonic vehicle X-33 tracking controller. Simulation results show that the proposed method is available and effective.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2016年第7期1414-1421,共8页
Journal of Beijing University of Aeronautics and Astronautics
基金
陕西省自然科学基金(2014JQ8342)~~
关键词
高超声速飞行器
线性矩阵不等式
容错控制
跟踪控制
鲁棒控制
hypersonic vehicle
linear matrix inequality(LMI)
fault-tolerant control
tracking control
robust control