期刊文献+

失重/模拟失重对内皮细胞的影响实验研究进展 被引量:1

Experimental Research Progress on the Effects of Real or Simulated Microgravity on Endothelial Cells
原文传递
导出
摘要 血管内皮作为血管壁的衬里,参与调节组织器官的局部血流和机体其它生理进程,在维持血管完整性和内环境稳定中发挥关键作用。内皮细胞对包括重力在内的机械应力刺激极为敏感,重力变化可对其形态和功能构成不同程度的影响。研究发现,失重/模拟失重通过诱导内皮细胞细胞骨架重塑、质膜caveolae重布,使其合成分泌血管活性物质、炎性介质的能力以及细胞表面粘附分子表达发生改变,这些分子变化又对内皮细胞的生长、增殖、凋亡、迁移和血管生成等具有精细调控作用。本文综合评述了失重/模拟失重对内皮细胞功能的影响,同时围绕文献报道中一些尚存争议的观点进行了适当讨论。 The endothelial cells(ECs), which line the inner surface of vessels, play a fundamental role in maintaining vascular integrity and tissue homeostasis, since they participate in regulating local blood flow and other physiological processes of the body. ECs are highly sensitive to mechanical stress, including microgravity. Several studies have found that ECs commonly undergo morphological and functional changes in response to alterations of gravity. Both microgravity and simulated microgravity lead to changes in the production and expression of vasoactive and inflammatory mediators and adhesion molecules in ECs, which mainly result from changes in the remodelling of the cytoskeleton and the distribution of plasma membrane caveolae. These molecular modifications finely control cell survival, proliferation, apoptosis, migration, and angiogenesis. In this paper, a comprehensive review is given on the effects of microgravity/simulated microgravity on ECs functions, some controversial issues reported in the literature are discussed at the same time.
出处 《现代生物医学进展》 CAS 2016年第23期4594-4600,共7页 Progress in Modern Biomedicine
基金 国家自然科学基金项目(81301681 81301682 81372130) 陕西省自然科学基金项目(2015SF108 2016JM8030) 第四军医大学教学改革研究项目(ZL201410)
关键词 失重 模拟失重 内皮细胞 Microgravity Simulated Microgravity Endothelial Cells
  • 相关文献

参考文献45

  • 1Pietsch J, Bauer J, Egli M, et al. The effects of weightlessness on the human organism and mammalian cells [J]. Curt Mol Med, 2011, 11 (5): 350-364.
  • 2Zhu ILl, Wang H, Liu Z. Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review[J]. Int J Occup Med Environ Health, 2015, 28(5): 793-802.
  • 3Convertino V A. Status of cardiovascular issues related to space flight: Implications for future research directions[J]. Respir Physiol Neurobiol, 2009, 169(Suppl 1): S34-S37.
  • 4Sokolovskaya A A, Ignashkova T I, Bochenkova A V, et al. Effects of simulated microgravity on cell cycle in human endothelial cells [J]. Acta Astronantica, 2014, 99:16-23.
  • 5Regan E R, Aird W C. Dynamical systems approach to endothelial het- erogeneity[J]. Circ Res, 2012, 111(1): 110-130.
  • 6Aird W C. Spatial and temporal dynamics of the endothelium [J]. J Thromb Haemost, 2005, 3(7): 1392-1406.
  • 7Aird W C. Vascular bed-specific hemostasis: role of endothelium in sepsis pathogenesis [J]. Crit Care Med, 2001, 29 (7 Suppl): S28-S34, S34-S35.
  • 8Herranz R, Anken R, Boonstra J, et al. Ground-based facilities for sim- ulation ofmicrogravity: organism-specific recommendations for theiruse, and recommended terminology [J]. Astrobiology, 2013, 13 (1) 1-17.
  • 9Rehnberg L, Russomano T, Falcao F, et al. Evaluation of a novel basic life support method in simulated microgravity [J]. Aviat Space Envi- ron Med, 2011, 82(2): 104-110.
  • 10Koch C, Kohn F P, Bauer J. Preparing normal tissue cells for space flight experiments [J]. Prep Biochem Biotechnol, 2016, 46 (2): 208-213.

同被引文献22

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部