期刊文献+

高维遥感图像的快速分类算法 被引量:1

A fast classification algorithm for high-dimensional remote sensing images
原文传递
导出
摘要 为了实现对高维遥感图像的快速准确分类,提出了一种基于k均值二叉树支持向量机(SVM)的分类方法。该方法通过对选取的训练样本进行k均值聚类,生成支持向量机分类二叉树,作为确定最佳分类顺序的依据,以降低分类过程中的误差累积并提高整体分类精度,而且可缓解由样本数量不均衡导致的分类误差。该方法可在不进行降维处理的情况下,对高维遥感图像进行快速准确分类。测试结果表明,其分类速度和分类精度都优于传统的支持向量机分类结果。 To achieve fast and accurate classification for high-dimensional remote sensing images,a classification method based on k-means binary tree was developed.The k-means clustering method was carried out to generate binary tree for SVM classification according to the selected samples,and it was the basis of the determination of optimal classification sequence in order to reduce the error accumulation in the classification process and to improve the overall classification accuracy.Furthermore,to relieve the errors caused by sample unbalance.The method could realize image classification quickly and accurately for highdimensional remote sensing images without reducing the dimension.Test results indicated that both of the speed and the accuracy were better than the traditional SVM classification result.
出处 《测绘科学》 CSCD 北大核心 2016年第8期19-23,37,共6页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41201454) 辽宁省大学生创新创业训练计划项目(201410147047)
关键词 支持向量机SVM k均值二叉树 图像分类 高维数据 SVM k-means binary tree image classification high-dimensional data
  • 相关文献

参考文献20

  • 1HUGHES G F. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Informa- tion Theory, 1968,14(1) ..55-63.
  • 2LANDGREBE D A. Signal theory methods in multi- spectral remote sensing[M]. Hoboken:John Wiley Sons,Inc. ,2003.
  • 3RICHARDS J A,JIA X. Remote sensing digital image analysis .. an introduction[ M]. 4th ed. Berlin : Springer, 2005:364.
  • 4BOSER B E,GUYON I M,VAPNIK V N. A training algorithm for optimal margin classifier [ C]//Fifth ACM Annual Workshop on Computational Learning. ES. 1. l:[-s, n. 1,1992:144-152.
  • 5CORTES C, VAPNIK V N. Support vector network [J]. Machine Learning, 1995,20(3) .. 273-297.
  • 6VAPNIK V N. The nature of statistical learning theory [M]. New York: Springer, 1995.
  • 7GUALTIERI J A, CROMP R F. Support vector ma- chines for hyperspectral remote sensing classification [C]//Proceedings of SPIE. [S. 1. ]: Is. n. 1,1998,3584 (25) : 1-28.
  • 8GUALTIERI J A,CHETTRI S R,CROMP R F,et al. Sup- port vector machines applied to AVIRIS data[Z]. Summaries of the Airborne Earth Science Workshop,1999.
  • 9KANEVSKI M, POZDNUKHOV A,CANU S, et al. Advanced spatial data analysis and modeling with sup- port vector machines[J]. International Journal of Fuzzy Systems, 2002,4 (1) .. 606-615.
  • 10骆剑承,周成虎,梁怡,马江洪.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55. 被引量:107

二级参考文献2

共引文献124

同被引文献34

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部