摘要
The parametric decay instabilities (PDIs) of ion Bernstein wave with different input power levels are investigated via particle-in-cell simulation. It is found that the number of decay channels increases with the input power. Resonant mode-mode couplings dominate for a low input power. With increasing the input power, the nonresonant PDIs appear to dissipate the energy of the injected wave and give rise to edge ion heating. The generated child waves couple with each other as well as the injected wave and /or act as a pump wave to excite new decay channels. As a result, the frequency spectrum is broadened with the increase of the input power.
The parametric decay instabilities (PDIs) of ion Bernstein wave with different input power levels are investigated via particle-in-cell simulation. It is found that the number of decay channels increases with the input power. Resonant mode-mode couplings dominate for a low input power. With increasing the input power, the nonresonant PDIs appear to dissipate the energy of the injected wave and give rise to edge ion heating. The generated child waves couple with each other as well as the injected wave and /or act as a pump wave to excite new decay channels. As a result, the frequency spectrum is broadened with the increase of the input power.
基金
Supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(NSFC No 11261140328 and NRF No 2012K2A2A6000443)
the National Magnetic Confinement Fusion Science Program of China under Grant No 2013GB111002
the National Natural Science Foundation of China under Grant Nos 11175212 and 11475220
the Program of Fusion Reactor Physics and Digital Tokamak with the Chinese Academy of Sciences 'One-Three-Five' Strategic Planning