期刊文献+

Phase Transformation and Enhancing Electron Field Emission Properties in Microcrystalline Diamond Films Induced by Cu Ion Implantation and Rapid Annealing 被引量:1

Phase Transformation and Enhancing Electron Field Emission Properties in Microcrystalline Diamond Films Induced by Cu Ion Implantation and Rapid Annealing
下载PDF
导出
摘要 Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1S-1 for microcrystalline diamond (MCD) films. Its electrical field emission behavior can be turned on at Eo = 2.6 V/μm, attaining a current density of 19.5μA/cm2 at an applied field of 3.5 V/#m. Field emission scanning electron microscopy combined with Raman and x-ray photoelectron mi- croscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films, forming conduction channels for electron transportation. Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1S-1 for microcrystalline diamond (MCD) films. Its electrical field emission behavior can be turned on at Eo = 2.6 V/μm, attaining a current density of 19.5μA/cm2 at an applied field of 3.5 V/#m. Field emission scanning electron microscopy combined with Raman and x-ray photoelectron mi- croscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films, forming conduction channels for electron transportation.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期123-126,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 11405114 the Natural Science Foundation of Shanxi Province under Grant No 2015021065
  • 相关文献

参考文献17

  • 1Yamaguchi H, Masuzawa T, Nozue S, Kudo Y, Saito I, Koe J, Kudo M, Yamada T, Tat~kuwa Y and Okano K 2009 Phys. Rev. B 80 165321.
  • 2Lv F X 2003 Physics 32 383.
  • 3Beloborodov I S, Zapol P, Gruen D M and Curtiss L A 2006 Phys. Rev. B 74 235434.
  • 4Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211.
  • 5Sankaxa~ K J, Chen H C, Lee C Y, Tai N H and Lin I N 2012 Appl. Phys. Lett. 101 241604.
  • 6Birrell J, Gerbi J E, Auciello O, Gibson J M, Gruen D M and Carlisle J A 2003 J. Appl. Phys. 93 5606.
  • 7Arenal R, Bruno P, Miller D J, BleueI M, LaI J and Gruen D M 2007 Phys. Rev. B 75 195431.
  • 8Talapatra S, Cheng J Y, Chakrapani N, Trasobares S, Cao A, Vajtai R, Huang M B and Ajayan P M 2006 Nanotech- nology 17 305.
  • 9Zhu L L 2015 Chin. Phys. B 24 016201.
  • 10Zhang H, Yang S Y, Liu G P, Wang J X, Jin D D, Li H J, Liu X L, Zhu Q S and Wang Z G 2014 Chin. Phys. B 23 017305.

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部