期刊文献+

跨声速轴流压气机叶尖间隙流动控制 被引量:1

Tip clearance flow control for a transonic axial compressor
下载PDF
导出
摘要 为了控制叶尖间隙的二次流动,采用小翼技术数值研究了某跨声速压气机叶顶间隙的流场分布;通过Spalart-Allmars单方程湍流模型,利用二阶迎风时间推进格式以及标准的近壁函数,划分由结构和非结构的混合形式组成网格,求解三维定常雷诺时均的Navier-Stokes方程。研究表明,带有吸力面小翼的泄漏涡分离线沿着切向远离吸力面的方向移动,泄漏涡的作用范围减小及涡核的位置远离吸力面侧,并且叶栅出口质量平均总压损失系数降低。说明加装吸力面小翼能够有效地抑制跨声速轴流压气机叶顶间隙的二次流动,减小泄漏流动所带来的影响,一定程度地降低叶栅损失,同时端壁运动对叶顶间隙的泄漏造成一定的影响。 In this paper,the numerical investigation was carried out to study the tip clearance flow of a transonic compressor using a blade tip winglet technique to control the secondary flow at the clearance of blade tip. Navier-Stokes equation during three-dimensional time-averaged steady state was solved by Spalart-All mars single-equation turbulence model. Second order upwind time advance scheme and the standard near wall function were also utilized. The grid was constructed by structure and non-structure hybrid scheme. The results show that the separation line of leakage vortex with the suction side winglet is far away from the suction surface. The effect of leakage vortex decreases and the position of the vortex core is far away from the suction surface. The total pressure loss coefficient corresponding to quality average in cascade outlet decreases. These phenomena indicate that the installation of the suction-side winglet can effectively restrain the secondary flow of a transonic axial compressor at the tip clearance,reduce the influences of the leakage flow and decrease the cascade loss at some extent. At the same time,the end wall movement has a certain impact on the leakage of tip clearance.
作者 于佳 徐志晖
出处 《沈阳航空航天大学学报》 2016年第3期32-37,共6页 Journal of Shenyang Aerospace University
关键词 叶轮机 Navier-Stokes 流动控制 Spalart-Allmars 小翼技术 turbo machinery Navier-Stokes flow control Spalart-Allmars winglet technique
  • 相关文献

参考文献7

二级参考文献58

  • 1郑国胜,戴韧.轴流风扇叶片端导叶作用的研究[J].工程热物理学报,2006,27(z1):165-168. 被引量:10
  • 2杜朝辉,姚吉先.带有机匣处理结构的叶栅流场数值计算[J].航空动力学报,1996,11(2):169-172. 被引量:2
  • 3卢新根,楚武利,张燕峰.跨音速压气机间隙流与处理机匣相互作用分析[J].西安交通大学学报,2006,40(11):1357-1360. 被引量:15
  • 4Dring R P, Johslyn H D, Hardin L W. An Investigation of Axial Compressor Rotor Aerodynamics [J]. ASME Journal of Engineering for Power, 1982, 104(1): 84-96.
  • 5Whitcomb R T. A Design Approach and Selected Wind- Tunnel Results at High Subsonic Speeds for Wing-Tip Mounted Winglets [R]. NASA TN D-8260, 1976.
  • 6Inoue M, Kuroumaru M. Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor [J]. Journal of Turbomachinery, 1989, 111(2): 250-256.
  • 7Denton J D. Loss mechanism in turbomachinery[ J ]. J. of Turbunmachinery. 1993,115:621 - 656.
  • 8Pundhir D S, Sharma P B. Effect of casing treatment on aerodynamic performance of a contra-rotating axial compressor stage [J].Proceedings of the Institution of Mechanical Engineers, 1990, 240( 1 ) : 46 - 55.
  • 9Hathaway Michael D. Self-recirculating casing treatment concept for enhanced compressor performance[ R]. ASME 2002-GT-30368.
  • 10Strazisar Anthony J, Bright Michelle M. Compressor stall control through endwall recirculation [ R ]. ASME 2004- GT-54295.

共引文献82

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部