期刊文献+

基于块剪枝多路径匹配追踪的多信号联合重构 被引量:3

Joint multi-signal reconstruction based on block pruning multipath matching pursuit
下载PDF
导出
摘要 针对多路径匹配追踪(multipath matching pursuit,MMP)无法利用稀疏信号的结构信息、迭代层数较高时计算复杂度较大等问题,提出了一种适用于重构块稀疏信号的块剪枝多路径匹配追踪算法。该算法以原子块作为路径扩张的节点,在一定迭代层数后引入剪枝操作,极大地降低了数据运算量。进而,针对多观测向量(multiple measurement vector,MMV)问题,提出了MMV块剪枝MMP算法,用以实现无线传感网小范围内多传感器信号的联合重构。实验表明,块剪枝MMP的重构性能优于MMP,MMV块剪枝MMP的联合重构性能优于MMV块A*正交匹配追踪、MMV子空间匹配追踪和MMV正交匹配追踪。 Considering the disadvantages of ignoring sign als structured sparsity and the high complexity inhigh iterative layers in multipath matching pursuit (MMP ), the block pruning multipath matching pursuit(BPMMP) is proposed to reconstruct the block-sparse signal. In this algorithm, an atomic block serves as anode in the path expansion, and branch pruning operation is introduced after a certain number of iterations.Thus, BPMMP reduces the data processing cost greatly. Moreover, for multiple measurement vector (MMV)problem, BPMMP for MMV (BPMMPMMV) is proposed. It can achieve joint signal reconstruction for multiplesensors within a small range in the wireless sensor network. Experimental results show that BPMMP outperformsMMP on the reconstruction performance, and BPMMPMMV achieves higher joint reconstruction performancethan block A* orthogonal matching pursuit for MMV, subspace matching pursuit for MMV and orthogonalmatching pursuit for MMV.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第9期1993-1999,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61471313 61303128) 河北省自然科学基金(F2014203183) 河北省高等学校科学技术研究项目(Q2012087) 燕山大学青年教师自主研究计划(13LGB015)资助课题
关键词 分布式压缩感知 多观测向量 块稀疏 多路径匹配追踪 distributed compressed sensing (DCS) multiple measurement vector (MMV) block sparsity multipath matching pursuit (MMP)
  • 相关文献

参考文献3

二级参考文献33

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Baron D, Duarte M F, Sarvotham S, et al.. An information -theoretic approach to distributed compressed sensing[C]. Proceedings of the 43d Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2005: 814-825.
  • 3Chen J and Huo X. Theoretical results on sparse representations of multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4634-4643.
  • 4Davies M E and Eldar Y C. Rank awareness in joint sparse recovery[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1135-1146.
  • 5Kim J M, Lee O K, and Ye J C. Compressive MUSIC: revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278-301.
  • 6Kim J M, Lee O K, and Ye J C. Noise robust joint sparse recovery using compressive subspace fitting[OL], http://arxiv. org/abs/1112.3446, 2012.
  • 7Karahanoglu N B and Erdogan H. A* orthogonal matching pursuit: best-first search for compressed sensing signal recovery[J]. Digital Signal Processing, 2012, 22(4): 555-568.
  • 8Karahanoglu N B and Edogan H. Compressed sensing signal recovery via A*orthogonal matching pursuit[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, 2011: 3732-3735.
  • 9Intel berkeley lab wsn. http://db.csail.mit.edu/labdata/labdata.html, 2004.
  • 10Ding J, Chen L, and Gu Y. Performance of orthogonal matching pursuit for multiple measurement vectors[OL]. http://arxiv.org/abs/1109.6390, 2011.

共引文献14

同被引文献5

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部