期刊文献+

甲状腺结节超声图像分割算法研究 被引量:3

Ultrasonic image segmentation algorithm for thyroid nodules
下载PDF
导出
摘要 超声甲状腺结节分割是发现与识别甲状腺良恶性肿瘤的关键技术之一。针对模糊聚类法无法准确分割超声图像甲状腺结节边缘,而局部拟合(RSF)模型法对手动初始化轮廓敏感的问题,提出一种融合空间约束模糊C均值聚类和局部拟合RSF模型的分割结节方法。用空间约束模糊C均值聚类法(SKFCM)对图像进行聚类并二值化聚类结果作为RSF模型法初始轮廓,克服了RSF模型法对初始轮廓敏感问题,水平集演化参数也将通过聚类结果自动给出,不再需要人为设定。同时改进了RSF模型法拟合项,并利用高斯正则化规则RSF模型水平集,提高了RSF模型演化效率,缩短了收敛时间。仿真实验结果表明,提出的甲状腺结节超声图像分割方法能够快速准确地分割出结节区域。 Ultrasonic thyroid nodule segmentation is one of the key techniques to discover and identify the benign and malignant thyroid tumors. Fuzzy clustering nlethod can not accurately segment the edge of thyroid nodules in ultrasound images and Regin- Scalable Fitting(RSF) model is sensitive to manual initialization. This paper presents a hybrid segmentation method that utilizes both the space constraint of the Gaussian kernel induced by fuzzy C-means clustering and region scalable fitting (RSF) model. The clustering algorithm is used to pre-segment the image and hinarise the results of segmentation, which solves the initial contour of RSF. The controlling parameters of the level set evolution are estimated by the results of pre-segment and not by manual setting pa- rameters. The enerb7 item of Region scalable fitting model has been improved and Gaussian filtering is utilized to regularize RSF level set function, which improves segmentation efficiency and reduces the convergence time. Simulation experiment results show that the proposed model ensures an improvement in segmentation accuracy.
作者 王昕 徐文杰
出处 《电视技术》 北大核心 2016年第8期26-30,56,共6页 Video Engineering
基金 吉林省科技发展计划项目(201201129)
关键词 甲状腺结节分割 空间约束聚类 局部拟合模型 高斯正则化 thyroid nodules segmentation Gaussian kernel induced fuzzy C-means clustering (SKFCM) region scalable fitting (RSF) model Gaussian regularization
  • 相关文献

参考文献12

  • 1朱玲,施心陵,刘亚杰,田溪.基于蚁群算法的甲状腺结节超声图像边沿检测法[J].计算机工程,2006,32(24):178-179. 被引量:3
  • 2HERMUS A R, HUYSMANS D A. Treatment of benign nod- ular thyroid disease[J]. The new england journal of medicine, 1998, 338 (20) :1438-1447.
  • 3LI C M,XU C Y,GUI C F,et al. Distance regularized level set evolution and its application to image seg,nentation[J]. 1EEE transactions on image processing. 20J0, 19 ( 12 ) : 3243 -3254.
  • 4LI C M,KAO C Y, GORE J,et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE transactions on image processing, 2008, 17 (10): 1940-1949.
  • 5ZHANG K,SONG H,ZHANG L. Active contours driven by local image fitting energy [J]. Pattern recognition, 2010, 43(4) :1199-1206.
  • 6CHANTF V. Active contours without edges[J]. IEEE transactions on image processing ,2001,10 (2) :266-277.
  • 7郑伟,张晶,李凯玄,郝冬梅.结合局部信息改进的C-V超声图像分割模型[J].光电工程,2015,42(8):66-72. 被引量:5
  • 8赵杰,祁永梅,潘正勇.结合全局和双核局部拟合的活动轮廓分割模型[J].计算机应用,2013,33(4):1092-1095. 被引量:6
  • 9GUPTA D,ANAND R S,TYAGI B. A hybrid segulentation method based on Gaussian kernel fuzzy clustering and region based active contour model for ultrasound medical images [J]. Biomedical signal processing and control,2015 (16) : 98-112.
  • 10MAROULISA D E,SAVELONASA M A, KARKANISB S A, et ai. Computer- aided thyroid nodule detection in ultra-sound images [C]//Proc. 18th IEEE Symposium on Computer- Based Medical Systems. [S. 1.] : IEEE, 2005: 271-276.

二级参考文献46

  • 1韩彦芳,施鹏飞.基于蚁群算法的图像分割方法[J].计算机工程与应用,2004,40(18):5-7. 被引量:38
  • 2闵莉,李小毛,唐延东.一种改进的无需水平集重新初始化的C-V主动轮廓模型(英文)[J].光电工程,2006,33(9):52-58. 被引量:12
  • 3Chan T, Vese L. Active contours without edges [J]. IEEE Transaction on Image Processing, 2001, 10(2): 266-277.
  • 4WANG Wen-yu. An Active Contour Model For Selective Segmentation [C]// International Conference on Computer Graphics, Imaging and Vision: New Trends. Washington, DC, USA: IEEE Press, 2005: 259-260.
  • 5Li C, Xu C, Gui C, et al. Level set evolution without re-initialization: a new variational formulation [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE Press, 2005, 1: 430-436.
  • 6Li Chnnming, Kao Chiu-Yen, Gore J C, et al. Implicit Active Contours Driven by Local Binary Fitting Energy [C]//IEEE Conferenee on Computer Vision and Pattern Recognition (CVPR), Minnesota, USA: IEEE Press, 2007: 1-7.
  • 7WANG Yuping, DANG Chuangyin. An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin- Squares [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(5): 579-595.
  • 8Caselles V, Kimmel R, Sapiro G. Geodesic active contours [J]. Int'l J. Comp. Vis, 1997, 22: 61-79.
  • 9LIU Huafeng, CHEN Yunmei, CHEN Wufan. Neighborhood aided implicit active contours [C]// IEEE Conference on Computer Vision and Pattern Recognotion (CVPR). New York, USA: IEEE Press, 2006, 1: 841-848.
  • 10Wong W C K, Chung A C S. Bayesian image segmentation using local iso-intensity structural orientation [J]. IEEE Transaction on Image Processing, 2005, 14(10): 1512-1523.

共引文献36

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部