期刊文献+

层层叠加制备三维静电纺纳米纤维结构

Fabrication of 3D Electrospun Nanofiber Structures Through Stacking Multi-Layers Fiber Membrane
下载PDF
导出
摘要 以通孔金属片为静电纺丝的负极制备了通孔阵列纳米纤维薄膜,将多层纳米纤维薄膜在溶剂中叠加构建了三维纳米纤维结构。扫描电子显微镜结果表明,对于聚苯乙烯、聚乙烯吡咯烷酮和聚己内酯3种不同的高分子材料,均可形成带有规则有序通孔结构的纳米纤维薄膜,孔的大小可以通过模板的选择进行调节。在水中将聚苯乙烯纤维薄膜层层叠加形成了三维纳米纤维结构。在叠加四层聚苯乙烯纤维薄膜的三维结构上培养NIH3T3细胞,细胞可以在三维空间内生长,三维纤维结构表现出良好的生物相容性。 Nanofiber mats with through-hole patterns were prepared by electrospinning technique, in which a metal plate with hole arrays was used as negative collector. Afterwards, 3D nanofiber structures were fabricated by stacking different layers nanofiber mats in solvent. Scanning electron microscopy measurement states that nanofiber membrane with regular holes is formed for different polymers, such as polystyrene (PS), polyvinyl pyrrolidone (PVP) and polycaprolactone (PCL). The size of the hole in the nanofiber film can be controlled by the original design of the negative collector. Obvious 3D structure was constructed after stacking four nanofibrous layers polystyrene fiber mats together in water. The PS 3D nanofiber structures show high biocompatibility for the NIH3T3 cell culture, which is able to grow towards different directions.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2016年第8期144-148,154,共6页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(21403165 21501140) 陕西省自然科学基金资助项目(2015JQ2047 2016JQ2002) 陕西省教育厅项目(14JK1468 15JK1453 14Jk1476) 博士后基金(2015T81043)
关键词 静电纺丝 纳米纤维 层层叠加 三维结构 细胞培养 electrospinning nanofihers layer by layer stacking three dimension cell culture
  • 相关文献

参考文献12

  • 1Baker B M, Trappmann B, Wang W Y, et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar 1268. [J]. Nat. Mater., 2015, 14: 1262-1268.
  • 2Yang X, Salles V, Kaneti Y V, et al. Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by eleetrospinning[J]. Sens. Actuators, B, 2015, 220: 1112-1119.
  • 3Liu J, Shi J, Jiang L, et al. Segmented magnetic nanofibers for single cell manipulation[J]. Appl. Surf. Sci., 2012, 258: 7530- 7535.
  • 4Wang X, Ding B, Li B. Biomimetie electro,spun nanofibrous structures for tissue engineering[J]. Mater. Today, 2013, 16: 229- 241.
  • 5Kim T G, Shin H, Lira D W. Biomimetic scaffolds for tissue engineering[J]. Adv. Funct. Mater., 2012, 22: 2446-2468.
  • 6Nandakumar A, TruckenmuIIer R, Ahmed M, et al. A fast process for imprinting micro and nano patterns on electrospun fiber meshes at physiological temperatures[J]. Small, 2013, 9: 3405-3409.
  • 7Xie J, MaeEwan M R, Li X, et al. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties [J]. ACS Nano, 2009, 3: 1151-1159.
  • 8Telerneeo T A, Ayres C, Bowlin G L, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by eleetrospinning[J ]. Aeta Biomater. , 2005, 1: 377-385.
  • 9L X, Xie J, Lipner J, et al. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site[ J ]. Nano Lett. , 2009, 9: 2763-2768.
  • 10Sun B, Long Y Z, Zhang H D, et al. Advances in three- dimensional nanofibmus macrostmctures via electrospirming [ J ]. Prog. Polym. Sei., 2014, 39: 862-890.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部