期刊文献+

非阻塞性颗粒阻尼器内部的颗粒莱顿弗罗斯特现象 被引量:5

Granular Leidenfrost Effect in a Non-Obstructive Particle Damper
下载PDF
导出
摘要 为了更好地揭示非阻塞性颗粒阻尼器(NOPD)的减振机理,基于振动颗粒物质的流变特性,研究了NOPD的阻尼效果和其内部阻尼颗粒运动形态之间的关系,通过实验确定了NOPD发挥最优阻尼效果时其内部颗粒的运动形态,使用离散元仿真分析了最优阻尼颗粒的耗散特性。研究表明:实验设计参数下的NOPD发挥最优阻尼效果时(激振强度Γ=3.3,f=21 Hz),其内部出现稳定的颗粒莱顿弗罗斯特现象;这种状态下的NOPD最优阻尼效果主要来自两方面,一方面是主系统的部分振动动能通过颗粒间或颗粒与容器壁间发生的碰撞和摩擦以热能的形式散发,是颗粒对主系统振动能量的直接耗散;另一方面是主系统的部分振动动能转化为浮动颗粒的势能以维持颗粒莱顿弗罗斯特效应的稳定,这可看作是颗粒对主系统振动能量的间接耗散。 To reveal the optimal damping mechanism of non-obstructive particle dampers (NOPDs), the relationship between the damping performance of NOPDs and the motion mode of damping particles in NOPDs is deduced following the rheological behavior of vibrated granular particles. The motion mode of the damping particles giving the optimal damping effect is determined via cantilever system experiments, and the dissipation properties of the damping particles giving the optimal effect are analyzed numerically by the discrete element method (DEM). It is found that when the NOPD gives the optimal damping effect (P=3.3, f=21 Hz), the steady granular Leidenfrost phenomenon occurs. In this circumstance, the optimal damping performance of the NOPD results mainly from two aspects, i.e. the direct energy dissipation caused by collisions and frictions between particle-particle and particle-wall, and the energy conversion from the input vibration energy to the potential energy of levitated granular particles, which can be regarded as indirect energy dissipation.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第8期15-19,44,共6页 Journal of Xi'an Jiaotong University
基金 中国空间技术研究院创新基金资助项目(J20141109)
关键词 颗粒阻尼器 最优阻尼 颗粒莱顿弗罗斯特效应 能量耗散 particle damper optimal damping granular Leidenfrost effect energy dissipation
  • 相关文献

参考文献19

  • 1PANOSSIAN H V. Structural damping enhancement via non-obstructive particle damping technique[J].ASME Journal of Vibration and Acoustics, 1992, 114 (1) : 101-105.
  • 2方江龙,王小鹏,陈天宁,张凯.动理论在预测非阻塞性颗粒阻尼能量耗散中的应用[J].西安交通大学学报,2015,49(4):12-17. 被引量:4
  • 3FRIEND R D, KINRA V K. Particle impact damping [J]. Journal of Sound and Vibration, 2000, 233(1): 93-118.
  • 4张超,陈天宁,王小鹏,陈卫华.颗粒阻尼线性离散元模型参数的选取方法[J].西安交通大学学报,2014,48(3):96-101. 被引量:4
  • 5ZHANG Kai, CHEN Tianning, WANG Xiaopeng, et al. Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper [J]. Journal of Sound and Vibration, 2016, 364: 30- 43.
  • 6SALUElqA C, POSCHEL T, ESIPOV S E. Dissipa- tive properties of vibrated granular materials [J ]. Physical Review: E, 1999, 59(4): 4422-4425.
  • 7CLIAMENT E, DURAN J, RAJCHENBACH J. Ex- perimental study of heaping in a two-dimensional "sand pile" [J]. Physical Review Letters, 1992, 69 (8): 1189-1192.
  • 8AOKI K M, AKIYAMA T. Spontaneous wave pat- tern formation in vibrated granular materials [J]. Physical Review Letters, 1996, 77(77):4166-4169.
  • 9HSIAU S S, WU M H, CHEN C H. Arching phe- nomena in a vibrated granular bed [J]. Powder Tech- nology, 1998, 99(2): 185-193.
  • 10JIANG Z H, WANG Y Y, WU J. Subharmonic mo- tion of granular particles under vertical vibrations [J]. Europhysics Letters, 2006, 74(3): 417-423.

二级参考文献34

  • 1BAI Xianming, BINOY S, LEON M K, et al. Parti- cle dynamics simulations of a piston-based particle damper [J]. Powder Technology, 2009, 189(1) : 115- 125.
  • 2XU Zhiwei, MICHAEL Y W, CHEN Tianning. Par- ticle damping for passive vibration suppression., nu- merical modeling and experimental investigation[J]. Journal of Sound and Vibration, 2005, 279(1/2/3/4/ 5) : 1097-1120.
  • 3BAI Xianming, LEON M K, WANG Q, et al. Inves- tigation of particle damping mechanism via particle dy- namics simulations [J]. Granular Matter, 2009, 11 (6) : 417-429.
  • 4CUI Zhiyuan, WU Jiuhui, CHEN Hualing, et al. A quantitative analysis on the energy dissipation mecha- nism of the non-obstructive particle damping technolo- gy [J]. Journal of Sound and Vibration, 2011, 330 (11) : 2449-2456.
  • 5ALBERTO D R, FRANCESCO P D M. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes [J]. Chemical En- gineering Science, 2004, 59(3): 525-541.
  • 6ZHANG Chao, CHEN Tianning, WANG Xiaopeng. The bean bag damper model based on discrete element method [C]//20th International Congress on Sound and Vibration. Bangkok, Thailand: ICSV, 2013: 1-8.
  • 7CUNDALL P A, STRACK O D L. A discrete numeri- cal model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65.
  • 8CHEN Tianning, MAO Kuanmin, HUANG Xieqing, et al. Dissipation mechanism of non-obstructive parti- cle damping using discrete element method [C]//Pro- ceedings of SHE International Symposium on Smart Structures and Materials. Bellingham, WA, USA: SPIE, 2001: 294-301.
  • 9WONG C X, DANIEL M C, RONGONG J A. Energy dissipation prediction of particle dampers[J]. Journal of Sound and Vibration, 2009, 319: 91-118.
  • 10DANIEL N J E. The effectiveness of particle dampers under centrifugal loads [D]. Stellenbosch, South Afri- ca: University of Stellenbosch, 2009.

共引文献6

同被引文献34

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部