期刊文献+

时间连续贝叶斯分类目标跟踪算法 被引量:1

Temporal consistent Bayes classification object tracking algorithm
下载PDF
导出
摘要 为提高目标跟踪的鲁棒性,提出一种基于结构稀疏表示的时间连续贝叶斯分类跟踪算法。在粒子滤波框架下进行,采用结构稀疏表示原理对样本进行线形重构。考虑到跟踪过程中目标形态帧间的连续性,将时间连续约束项嵌入线性重构目标方程,设计目标方程求解方法,获得稀疏系数;为更好地提取稀疏系数中的相似度信息,利用贝叶斯原理设计一款分类器,通过跟踪过程中获得的正负样本进行训练,有效地对候选目标进行分类。将该算法与其它4种先进的算法在6组测试视频中进行比较,实验结果表明,该算法在复杂条件下具有较高的鲁棒性。 For improving the robustness of object tracker,a structured sparse representation based temporal consistent Bayes classification tracking algorithm was proposed.Under the framework of particle filter,the structured sparse representation principle was used to linearly recombine samples.To encourage the consecutiveness of inter-frame,the temporal consistency constraint term was imbedded into the objective function.The coding coefficients were obtained by designing a solving method of the function.For better extracting the likelihood information from coding coefficients,a classifier based on the principle of Bayes was designed.The classifier was trained by both positive and negative samples,and the candidates were classified effectively.The proposed tracker was compared with 4state-of-the-art trackers on 6testing videos.Experimental results demonstrate that the proposed tracker is more robust in complex scenes.
出处 《计算机工程与设计》 北大核心 2016年第8期2125-2131,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61304084) 广东省自然科学基金项目(2014A030307038) 嘉应学院创新强校基金项目(CQX036)
关键词 目标跟踪 分类器 粒子滤波 稀疏表示 目标方程 object tracking classifier particle filter sparse representation objective function
  • 相关文献

参考文献19

  • 1张焕龙,胡士强,杨国胜.基于外观模型学习的视频目标跟踪方法综述[J].计算机研究与发展,2015,52(1):177-190. 被引量:64
  • 2Zhu P,Zuo W,Zhang L,et al.Image set based collaborative representation for face recognition[J].IEEE Trans on Information Forensics and Security,2014,9(7):1120-1132.
  • 3Yang M,Feng X C.Sparse representation or collaborative representation:Which helps face recognition[C]//IEEE International Conference on Computer Vision.Kyoto:IEEE,2011:471-478.
  • 4Yang M,Zhang L,Zhang D,et al.Relaxed collaborative representation for pattern classification[C]//IEEE Conference on Computer Vision and Pattern Recognition.Providence:IEEE,2012:2224-2231.
  • 5王琦,惠康华.基于稀疏近邻表示的分类方法[J].计算机工程与设计,2013,34(4):1425-1431. 被引量:4
  • 6Mei X,Ling H.Robust visual tracking and vehicle classification via sparse representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2011,33(11):2259-2272.
  • 7Mei X,Ling H,Wu Y,et al.Minimum error bounded efficient L1tracker with occlusion detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Kyoto:IEEE,2011:1257-1264.
  • 8侯跃恩,李伟光,容爱琼,叶国强.融合背景信息的分块稀疏表示跟踪算法[J].华南理工大学学报(自然科学版),2013,41(8):21-27. 被引量:9
  • 9Bai T X,Li Y F.Robust visual tracking with structured sparse representation appearance model[J].Pattern Recognition,2012,45(6):2390-2404.
  • 10Bao C,Wu Y,Ling H,et al.Real time robust L1tracker using accelerated proximal gradient approach[C]//IEEE Conference on Computer Vision and Pattern Reconition.Providence:IEEE,2012:1830-1837.

二级参考文献103

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53 (12): 4655-4666.
  • 3Aharon M, Elad M, Bruckstein A. K-svd.. An algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Transactions Signal Process, 2006 (54) : 4311-21.
  • 4Roth S, Black M J. Fields of experts: A framework for learning image priors [C]//IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA: Los Alamitos, 2005: 860-867.
  • 5Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52 (1) : 6-18.
  • 6Elad M, Aharon M. Image denoising via sparse and redundant representation over learned dictionaries [J]. IEEE Transactions on Image Process, 2006, 15 (12).. 3736-3744.
  • 7Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration [J]. IEEE Transactions on Image Process, 2008, 17 (1): 53-69.
  • 8QIAO L S, CHEN S C, TAN X Y. Sparsity preserving projections with applications to face recognition [J]. Pattern Recogni- tion, 2010, 43 (1): 331-341.
  • 9Mairal J, Bach F, Ponce J, et al. Zisserman. discriminative learned dictionaries for local image analysis [C]//IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA: Los Alamitos, 2008: 1-8.
  • 10Wright J, Yang A, Sastry S, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2): 210-227.

共引文献74

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部