期刊文献+

基于改进引力搜索算法的优化特征选择算法 被引量:4

Optimized feature subset selection based on improved gravitational search algorithm
下载PDF
导出
摘要 针对引力搜索算法早熟收敛和局部收敛能力慢的不足,提出一种改进的引力搜索算法(BGSA-PS),并用于特征选择处理,从原始特征集合中寻找合适且数量较小的特征子集。加入多样性因子更新粒子的速度,扩展全局搜索空间,防止早熟收敛,结合模式搜索法增强并加速局部搜索能力。在UCI分类数据集上的实验结果表明,该方法同原始离散型引力搜索算法及相似算法相比,选取的特征数量较少、分类精度较高,是一种有效的特征选择方法,可广泛用于特征选择领域。 To overcome the premature search convergence and the stagnation situation,an algorithm based on improved binary gravitational search algorithm(BGSA-PS)was proposed and applied for feature subset selection,which selected the best subset of features.The diversity factor was introduced into BGSA,which extended the search space to prevent the premature search convergence.The pattern search method was combined to increase the local search capacity.Experimental results on UCI datasets show the effectiveness and efficiency of the proposed algorithm.Smaller number of selected features is obtained and higher classification accuracy is achieved than using BGSA and similar algorithms.The algorithm can be successfully applied in the field of feature selection.
出处 《计算机工程与设计》 北大核心 2016年第8期2254-2258,2270,共6页 Computer Engineering and Design
基金 吉林省科技计划基金项目(20140520115jh)
关键词 离散引力搜索 特征选择 模式搜索 人工智能 数据分类 binary gravitational search algorithm feature selection pattern search artificial intelligence data classification
  • 相关文献

参考文献15

  • 1García-Pedrajas N,de HaroGarcía A,Pérez Rodríguez J.A scalable approach to simultaneous evolutionary instance and feature selection[J].Information Sciences,2013,228(1):150-174.
  • 2Diao Ren,Shen Qiang.Nature inspired feature selection metaheuristics[J].Artificial Intelligence Review,2015,44(3):311-340.
  • 3戚孝铭,施亮.基于模拟退火及蜂群算法的优化特征选择算法[J].计算机工程与设计,2013,34(8):2917-2921. 被引量:9
  • 4赵志梅.基于代理模型和人工免疫系统的特征选择算法[J].计算机工程与设计,2014,35(6):2174-2178. 被引量:2
  • 5杨婷,孟相如,徐有,温祥西.基于杂交BPSO-SVM的网络故障特征选择[J].微电子学与计算机,2014,31(1):68-71. 被引量:2
  • 6许迪,徐连诚,任敏.基于改进混沌粒子群的特征提取方法[J].计算机工程与设计,2015,36(4):952-955. 被引量:2
  • 7Rashedi E,Nezamabadipour H,Saryazdi S.BGSA:Binary gravitational search algorithm[J].Natural Computation,2010,9(3):727-745.
  • 8Papa JP,Pagnin A,Schellini SA,et al.Feature selection through gravitational search algorithm[C]//IEEE International Conference on Acoustics,Speech and Signal Processing,2011:2052-2055.
  • 9Mohseni Bababdani B,Mousavi M.Gravitational search algorithm:A new feature selection method for QSAR study of anticancer potency of imidazo[4,5-b]pyridine derivatives[J].Chemometrics and Intelligent Laboratory Systems,2013,122:1-11.
  • 10Rashedi E,Nezamabadi-pour H.Feature subset selection using improved binary gravitational search algorithm[J].Journal of Intelligent and Fuzzy Systems,2014,26(3):1211-1221.

二级参考文献36

  • 1曾祥进,卢成.混沌PSO优化的马尔可夫随机场的深度恢复[J].华中科技大学学报(自然科学版),2013,41(S1):223-225. 被引量:2
  • 2乔立岩,彭喜元,彭宇.基于微粒群算法和支持向量机的特征子集选择方法[J].电子学报,2006,34(3):496-498. 被引量:25
  • 3陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 4Marco Lippi, Manfred Jaeger, Paolo Frasconi, et al. Relationalinformation gain [J]. Machine Learning, 2011, 83 ( 2 ):219-239.
  • 5ZHANG Wen, Taketoshi Yoshida,TANG Xijin. Text classifi-cation based on multi-word with support vector machine [J].Knowledge-Based Systems, 2008,21 (8) : 879-886.
  • 6LUO Meixiang,LUO Linkai. Feature selection for text classifi-cation using OR + SVM-RFE [C] //Xuahou: Chinese Controland Decision Conference. 2010: 1648-1652.
  • 7Okan Sakar C,Olcay Kursun. A method for combining mutualinformation and canonical correlation analysis: Predictive mutualinformation and its use in feature selection [J]. Expert SystAppl, 2012,39 (1): 3333-3344.
  • 8LU Zhimao, SHI Hong, ZHANG Qi, et al. Automatic Chinesetext categorization system based on mutual information [C] //Changchun : International Conference on Mechatronics and Au-tomation, 2009 : 4461-5114.
  • 9Erik Harsaae. Some pitfalls in the use of minimum chi-square[J]. Statistische Hefte,2008,17 (2): 81-104.
  • 10Ahmad Mozaffari, Mofid Gorji Bandpy, Tahereh B Gorji. Opti-mal design of constraint engineering systems : Application ofmutable smart bee algorithm [J]. IJBIC, 2012, 4 (3):167-180.

共引文献10

同被引文献23

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部