期刊文献+

变系数模型中稳健估计方法的比较和应用 被引量:2

Comparison of Robust Methods for Varying Coefficient Model
下载PDF
导出
摘要 目的在变系数模型中比较七种常见的稳健估计方法与最小二乘法的表现,为变系数模型中估计方法的选择提供依据。方法通过R软件随机模拟,以变系数模型产生数据并对其进行污染,比较稳健估计方法和最小二乘法估计结果的偏差、方差、均方误差以及积分均方误差的差异。结果当数据存在扰动时,尤其是存在X方向上的异常点时,M-Huber、最小绝对离差(least absolute deviation,LAD)估计、MM以及R这几种稳健方法的四项指标几乎都小于最小二乘法,其中,MM表现最好。而最小截断平方法(least trimmed squares,LTS)、最小中位数平方法(least median of squares,LMS)以及S由于在R软件中稳定性较差,并不适用于变系数模型。结论在变系数模型中,当有异常点存在时,采用MM估计能得到更加准确的结果。 Objective To compare the performance of several common robust methods and Ordinary Least Square (OLS) in varying coefficient model. Methods We used R software to simulate uncontaminated data and contaminated data. Bias, variance, mean square error (MSE) and integrated mean square error (IMSE) were used for the evaluation indices to compare the performance of these robust methods and OLS. Results When outliers were present, especially occured in x-space, M-Huber, LAD (Least Absolute Deviation), MM and R performed much better than OLS with smaller Bias, variance, MSE and IMSE in almost all cases. Among them, MM performed best overall against a comprehensive set of outlier conditions. Furthermore, LTS (Least Trimmed Squares), LMS (Least Median of Squares)and S did not seem to apply in varying coefficient model for their instability in R software. Conclusion When outliers occured, MM resulted in more accurate results in varying coefficient model.
出处 《中国卫生统计》 CSCD 北大核心 2016年第4期554-558,共5页 Chinese Journal of Health Statistics
基金 国家自然科学基金(11371100)
关键词 变系数模型 稳健 异常点 Varying coefficient model Robustness Outlier
  • 相关文献

参考文献20

  • 1Hastie T,Tibshirani R. Varying-coefficient Models. Journal of the Royal Statistical Society. Series B ( Methodological), 1993,55 (4) :757-796.
  • 2Fan J,Zhang W. Statistical methods with varying coefficient models. Stat Interface ,2008,1 ( 1 ) : 179-195.
  • 3Fan J, Zhang W. Statistical estimation in varying coefficient models. Ann Stat,1999,27(5) :1491-1518.
  • 4Park B, Mammen E, Lee Y, et al. Varying Coefficient Regression Models:A Review and New Developments. Int Stat Rev, 2015,83 ( 1 ) :36-64.
  • 5Feng L, Zou C, Wang Z, et al. Robust spline-based variable selection in varying coefficient model. Metrika,2015,78 ( 1 ) : 185-118.
  • 6徐丽红,刘志永,刘桂芬,罗天娥.纵向监测连续非随机缺失数据变系数模型及其应用[J].中国卫生统计,2012,29(3):314-317. 被引量:3
  • 7Yohai V, Zamar R. High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale. J Am Stat As- soc, 1988,83 (402) :406-413.
  • 8Rousseeuw P. Least median of squares regression. J Am Stat Assoc, 1984,79 (388) :871-880.
  • 9Rousseeuw P, Yohai V. Robust regression by means of S-estimators. Springer, 1984.
  • 10Jaeckel L. Estimating Regression Coefficients by Minimizing the Dis- persion of the Residuals. The Annals of Mathematical Statistics, 1972,43 (5) :1449-1458.

二级参考文献6

  • 1Diggle P, Heagerty P, Liang KY, et al. Analysis of Longitudinal Data. New York: Oxford University Press,2002.
  • 2Daniels M, Hogan, J. Missing data in longitudinal studies : strategies for bayesian modeling and sensitivity analysis. Monographs on Statistics and Applied Probability,2008,101. New York: Chapman & Hall.
  • 3Li S, Joseph WH. Varying-coefficient models for longitudinal processes with continuous-time informative dropout. Biostatistics,2010,11 ( 1 ) : 93- 110.
  • 4Ciprian MC, David R, Wand MP. Bayesian analysis for penalized spline regression using WinBUGS. Johns Hopkins University, Dept. of Biostatis- tics Working Papers ,2007:40-74.
  • 5Sibylle S, Uwe L, Andrew G. R2WinBUGS :A package for running Win- BUGS from R. Journal of Statistical Software ,2005,12 ( 3 ) : 1-16.
  • 6陈长生,徐勇勇,夏结来.半参数回归模型及模拟实例分析[J].中国卫生统计,2001,18(6):338-340. 被引量:4

共引文献6

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部