期刊文献+

随机森林倾向性评分方法及其在药品不良反应信号检测中的应用 被引量:7

Random Forest Propensity Scores Method and its Application in Drug Adverse Reaction Signal Detection
下载PDF
导出
摘要 目的探讨利用随机森林倾向性评分法控制混杂因素的基本思想和步骤,及其在药品不良反应信号检测中的应用。方法利用随机森林计算给定危险因素的条件下研究对象服用双膦酸盐的概率,而后分别通过倾向性评分1:1匹配,1:M匹配和回归调整法控制性别、年龄等混杂因素,分析服药双膦酸盐与骨折发生风险的关系,并与logistic回归倾向性评分法对应结果进行比较。结果随机森林倾向性评分法与logistic回归倾向性评分方法的结果是一致的。其中,倾向性评分1:1匹配样本量损失较大,且与1:M匹配和回归调整法的结果相差较大。结论随机森林倾向性评分法能有效控制药品不良反应信号检测过程中的混杂因素,可以与logistic回归倾向性评分法所得结果相互验证,提高结果的可靠性;但1∶1匹配可能不适用于药品自发呈报系统数据。 Objective The aim of this paper is to describe the basic ideas and algorithms of random forest propensity scores method for controlling confounders and apply it in detecting drug adverse reaction signals. Methods First, we used random forest to calculate a patient's probability of taking bisphosphonates. Then, we analyzed the association of bisphosphonate intake with risk of fracture by controlling potential confounders with propensity score method. The controlling confounders methods included 1 : 1 matching, 1 : M matching and regression adjustment by using the propensity score calculated by random forest. The results were compared with those from logistic propensity score. Results The results of random forest propensity score and lo- gistic propensity score were comparable. One to one propensity score matching cause a lot of sample lost and its results were quite different from those based on other methods. Conclusion Random forest propensity score method can reduce the confounding bias. Hence, it could be used as an alternative to and verification of the logistic propensity score in controlling confounders. However, 1 : 1 propensity score matching may not be suitable for adverse drug reaction data from a spontaneous reporting system.
出处 《中国卫生统计》 CSCD 北大核心 2016年第4期578-581,共4页 Chinese Journal of Health Statistics
基金 国家自然科学基金(No.81373105 81502895)
关键词 倾向性评分 随机森林 不良反应检测 混杂因素 Propensity score Random forest Adverse reaction detection Confounder
  • 相关文献

参考文献12

  • 1Grosse-Sundrup M, Henneman JP, Sandberg WS, et al. Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. British Medical Journal ,2012,345 :e6329.
  • 2Charlot M, Grove EL, Hansen PR, et al. Proton pump inhibitor use and risk of adverse cardiovascular events in aspirin treated patients with first time myocardial infarction: nationwide propensity score matched study. British Medical Journal ,2011,342 : d2690.
  • 3吕军城,王素珍.倾向指数匹配法在肺癌化疗效果评价中的应用[J].中国卫生统计,2014,31(2):190-192. 被引量:9
  • 4Little R J, Rubin DB. The central role of the propensity score in obser- vational studies for causal effects. Biometrika,1983,70( 1 ) :41-55.
  • 5Luellen JK, Shadish WR, Clark MH. Propensity Scores : An Introduc- tion and Experimental Test. Evaluation Review, 2005,29 ( 6 ) : 530- 558.
  • 6吴美京,吴骋,王睿,赵艳芳,贺佳.倾向性评分法中评分值的估计方法及比较[J].中国卫生统计,2013,30(3):440-444. 被引量:28
  • 7Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Statistics in Medicine, 2010,29 ( 3 ) : 337- 346.
  • 8钱维,王超,吴骋,许金芳,叶小飞,杜文民,贺佳.运用随机森林分析药品不良反应发生的影响因素[J].中国卫生统计,2013,30(2):209-213. 被引量:8
  • 9Breiman L. Random forests. Machine learning ,2001,45 ( 1 ) :35-32.
  • 10Moorthy K, Mohamad MS. Random forest for gene selection and mi- croarray data classification. Bioinformation. 2012,7 ( 3 ) : 142-146.

二级参考文献61

  • 1Bate A,Evans S. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf,2009,18 (6) :427-436.
  • 2Hauben M,Bate A. Decision support methods for the detection of ad- verse events in post-marketing data. Drug Discov Today, 2009,14 ( 7- 8) :343-57.
  • 3Stephenson WP, Hauben M. Data mining for signals in spontaneous re- porting databases:proceed with caution. Phannacoepidemiol Drug Saf, 2007,16:359-365.
  • 4Krisztina N,Jeno R,Andrea H,et al. Tree-based methods as an alterna- tive to logistic regression in revealing risk factors of crin-biting in hor- ses. Journal of Equine Veterinary Science,2010,30 ( 1 ) :21-26.
  • 5Yoonhee K, Robert W, et al. Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects. BMC Proceedings Volume 3 Supplement 7,2009 : Genetic Anal- ysis Workshop 16.
  • 6Yah VS, Lawrence FB, et al. Application of machine learning algo- rithms to predict coronary artery calcification with a sibship-based de- sign. Genet Epidemio1,2008,32 (4) :350-360.
  • 7Mao W, Shannon K. An optimum random forest model for prediction of genetic susceptibility to complex diseases. Lecture Notes in Computer Science, 2007,4426 : 193-204.
  • 8Bureau A, Dupuis J, Falls K, et al. Identifying SNPs predictive of phe- notype using random forests. Genet Epidemio1,2005 ,28 :171-82.
  • 9Diaz U, Sara A, et al. Gene selection and classification of microarray da- m using random forest. BMC Bioinformatics ,2006,7:3.
  • 10Liaw A, Wiener M. Classification and regression by random forest. Rnews,2002,2 ( 3 ) : 18-22.

共引文献41

同被引文献94

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部