期刊文献+

阻抗源电流型变流器的基本原理和研究现状 被引量:3

Basic principle and research status of impedance source current-fed converter
下载PDF
导出
摘要 阻抗源拓扑结构由于其独特的升降压功能得到越来越多的关注,目前已经应用于直交、交直以及相位频率均变化的交交电路中。阻抗源变流器可以分为电流型和电压型两大类,电流型和电压型相比,具有动态响应快、限流能力强、直流回路阻抗较大和输入电压较高等优点。本文对阻抗源电流型变流器进行详细分析,介绍阻抗源电流型变流器的发展历史和研究现状,研究有代表性的阻抗源电流型拓扑结构的工作原理及其优点和应用场合,并对其未来的发展进行展望。 Due to its unique boost and buck function, impedance source topology is getting more and more attention and has been applied in electric power conversion circuit. Various converter topologies have been reported in the literature to overcome the limitations and problems of the traditional converter topologies. Proper implementation of the impedance-source network with appropriate switching configurations and topologies reduces the number of power conversion stages in the power system, which may improve the reliability and performance of the power system. The impedance source converter can be generally classified into voltage-fed and current-fed types. Compared to the volt- age-fed type, current source converter has the advantages of faster dynamic response, stronger current limiting ca- pability, bigger dc circuit impedance, and higher input voltage. This paper provides a comprehensive review of the various impedance-source-networks-based current-fed power converters, summarizes the development history and current research status of impedance source current fed converter, and analyzes the topology and its advantages of the representative impedance source current source inverter and gives an outlook of its future development.
出处 《电工电能新技术》 CSCD 北大核心 2016年第8期46-56,共11页 Advanced Technology of Electrical Engineering and Energy
基金 国家自然科学基金项目(50907070 51361135705) 国家863计划项目(2013AA050803)
关键词 阻抗源 电流型 升降功能 impedance source current-fed buck-boost
  • 相关文献

参考文献40

  • 1丁新平 (Ding Xinping). Z源变流器关键技术的研究(Research on key aspects in Z-source converter) [D]. 杭州: 浙江大学(Hangzhou: Zhejiang University), 2007.
  • 2Peng F Z. Z-source inverter[J]. IEEE Transactions on Industry Applications, 2003, 39(2) : 504-510.
  • 3Loh P C, Vilathgamuwa D M, Gajanayake C J, et al. Transient modeling and analysis of pulse-width modulated Z-source inverter[J]. IEEE Transactions on Power Electronics, 2007, 22(2) : 498-507.
  • 4Liu J, Hu J, Xu L. Dynamic modeling and analysis of Z source converter - Derivation of AC small signal model and design oriented analysis[J]. IEEE Transactions on Power Electronics, 2007, 22(5): 1786-1796.
  • 5Loh P C, Gajanayake C J, Vilathgamuwa D M, et al. Evaluation of resonant damping techniques for Z-source current-type inverter[J]. IEEE Transactions on Power Electronics, 2008, 23(4):2035-2043.
  • 6Peng F Z, Shen M S, Qian Z M. Maximum boost control of the Z-source inverter[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 833-838.
  • 7Shen M S, Wang J, Joseph A, et al. Constant boost control of the Z-source inverter to minimize current ripple and voltage stress[J]. IEEE Transactions on Industry Applications, 2006, 42(3): 770-778.
  • 8Loh P C, Vilathgamuwa D M, Lai Y S, et al. Pulse-width modulation of Z-source inverters[J]. IEEE Transactions on Power Electronics, 2005, 20(6): 1346- 1355.
  • 9Loh P C, Blaabjerg F, Wong C P. Comparative evaluation of pulsewidth modulation strategies for Z-source neutral point clamped inverter[J]. IEEE Transactions on Power Electronics, 2007, 22(3): 1005-1013.
  • 10薛必翠,张承慧,丁新平.Z-源逆变器PWM调制策略的分析与比较[J].电工电能新技术,2013,32(3):95-100. 被引量:17

二级参考文献12

  • 1T Sukegawa, K Kamiyama, K Matsui, et al. Fully digital vector controlled PWM VSI-fed ac drives with an inverter dead-time compensation strategy [ J]. IEEE Transactions on Industry Applications, 1991, 27: 552-559.
  • 2Peng F Z. Z-source inverter [ J]. IEEE Transactions onIndustry Application, 2003, 39(2): 504-516.
  • 3M S Bakar, N A Rahim, K H Ghazali, et al. Z-source inverter pulse width modulation: a survey [ A ]. Interna- tional Conference on Electrical, Control and Computer En- gineering [ C]. 2011. 313-316.
  • 4T Meenakshi, K Rajambal. Identification of an effective control scheme for z-source inverter [ J]. Asian Power E- lectronics Journal, 2010, 4 (2) : 22-28.
  • 5Peng F Z, Shen M S, Qian Z M. Maximum boost control of the Z-source inverter [ A]. Proceedings of IEEE PESC [C]. 2004. 255-260.
  • 6M S Shen, J Wang, A Joseph, et al. Maximum constant boost control of the Z-source inverter [ A ]. IEEE Industry Applications Society Annual Meeting [ C ]. 2004. 142- 147.
  • 7S Miaosen, W Jin, A Joseph, et al. Constant boost con- trol of the Z-source inverter to minimize current ripple and voltage stress [J]. IEEE Transactions in Industry Appli- cations, 2006, 40: 770-778.
  • 8张涛.基于Quasi-z源网络三相光伏逆变器研究 [D].济南:山东大学 ,2011.
  • 9U Shajith Ali, V Kamaraj. Since carrier for fundamental fortification in three phase z-source PWM inverters [ J ]. Modern Applied Science, 2010, 14(1 ) : 73-81.
  • 10张超华,汤雨,谢少军.改进Z源逆变器的三次谐波注入控制策略[J].电工技术学报,2009,24(11):114-119. 被引量:41

共引文献16

同被引文献26

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部