期刊文献+

混沌粒子群优化算法在PID参数整定中的应用 被引量:5

Application of Chaos Particle Swarm Optimization Algorithm in PID Parameter Tuning
下载PDF
导出
摘要 针对传统PID参数整定方法和智能PID参数整定方法存在的不足,将粒子群优化算法与混沌理论相结合,提出了基于Logistic映射的混沌粒子群优化算法,并将该算法应用于PID参数的优化整定。结果表明:该算法能够获得良好的整定效果和收敛特性,从而验证了该算法的可行性和优越性。 In view of shortage of parameter tuning methods for traditional and intelligent PID, chaos particle swarm optimization algorithms based on Logistic mapping is proposed with combination of particle swarm optimization algorithm and chaos theory, and is applied in PID parameter optimization and tuning. The results show good setting effect and astringent properties can be obtained with the algorithm. The feasibility and superiority are verified.
作者 张霞
机构地区 太原学院
出处 《石油化工自动化》 CAS 2016年第4期32-33,39,共3页 Automation in Petro-chemical Industry
关键词 粒子群优化算法 混沌 PID参数整定 particle swarm optimization algorithm chaos PID parameter tuning
  • 相关文献

参考文献10

  • 1GOREZ R. A Survey of PID Auto-tuning Methods[J]. Journal A, 1997, 38(01): 3-10.
  • 2ZhANG C S, SUN J G. An Alternate Two Phases Particle Swarm Optimization Algorithm for Flow Shop Scheduling Problem [J]. Expert Systems with Applications, 2009, 36 (03): 5162-5167.
  • 3JIANG Y, HU T S, HUANG C C, et al. An Improved Particle Swarm Optimization Algorithm [J]. Applied Mathematics and Computation, 2007, 193(01) :231-239.
  • 4李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:306
  • 5周驰,高海兵,高亮,章万国.粒子群优化算法[J].计算机应用研究,2003,20(12):7-11. 被引量:178
  • 6CARROLL L, ECORA M P. Synchronizing Chaotic Circuits IEEE Trans[J]. CAS, 1991, 38(04): 453-456.
  • 7PECORA M, CARROLL L. Driving Systems with Chaotic Signals[J]. Phys. Rev. A, 1991, 44(04): 2374-2381.
  • 8詹姆斯.格莱克.混沌开创新科学[M].上海:上海泽文出版社,1990.90,91.
  • 9安凤栓,常俊林,苏丕朝,李亚朋,魏晓宾.基于改进粒子群优化算法的PID控制器参数优化[J].工矿自动化,2010,36(5):54-57. 被引量:6
  • 10ZIEGLER J G, NICHOLS N B. Optimum Settings for Automatic Controllers [J]. Journal of Dynamic System Measurement, and Control, 1993, 115(2B):220-222.

二级参考文献33

  • 1陈国初,俞金寿.微粒群优化算法[J].信息与控制,2005,34(3):318-324. 被引量:59
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 4[1]Kennedy J, Eberhart RC,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 5[2]Mataric M.Designing and Understanding Adaptive Group Behavior[J].Adaptive Behavior,1995,4:1-12.
  • 6[3]Dorigo M,V Maniezzo,A Colorni.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems, Man and Cybernetics, 1996.
  • 7[4]Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceedings of IEEE International Conference on Neutral Networks,Perth,Australia,1995.1942-1948.
  • 8[5]Kennedy J.The Particle Swarm:Social Adaptation of Knowledge[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,Indiana,1997.
  • 9[6]Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[C].Proceedings of Sixth International Symposium Micro Machine and Human Science,Nagoya,Japan,1995.
  • 10[7]Shi Y H,Eberhart R C.Parameter Selection in Particle Swarm Optimization[C].Annual,1998.

共引文献477

同被引文献57

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部