期刊文献+

求解非线性方程组的一种非精确Broyden方法 被引量:2

An Inexact Broyden Method for Nonlinear Equations
下载PDF
导出
摘要 本文提出了求解非线性方程组的一种非精确Broyden方法.该方法是文献[8]中精确Broyden方法的推广.在适当的条件下,我们证明了非精确Broyden方法具有全局收敛性和超线性收敛性.数值实验表明,该方法效果较好. This paper introduces an inexact Broyden method for solving nonlinear equations, which is an exten-sion of the method in [8]. Under appropriate conditions, we prove that the proposed method converges globally and superlinearly. Numerical results are given to show its efficiency.
作者 伍佩钰 张丽
出处 《数学理论与应用》 2016年第2期1-9,共9页 Mathematical Theory and Applications
基金 湖南省自然科学基金项目(14JJ3084) 湖南省教育厅科学研究项目(13B137)资助
关键词 非线性方程组 非精确Broyden方法 全局收敛 超线性收敛 Nonlinear equations Inexact Broyden method Global convergence Superlinear convergence
  • 相关文献

参考文献11

  • 1袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..
  • 2Broyden C. G.,A class of methods for solving nonlinear simultaneous equations[J]. Mathematics of Com-putation, 1965,19(2) : 57 - 593.
  • 3Dennis J. E.,More J. J.,A characterization of superlinear convergence and its application to quasi-New-ton methods[J]. Mathematics of Computation, 1974,8(2) : 549 - 560.
  • 4Broyden C. G., Dennis J. E.,More J. J., On the local and superlinear convergence of quasi - Newtonmethods[J]. Journal of Institute of Mathematics and Applications, 1973,12(1) : 223 - 246.
  • 5Dennis J. E., Schnabel R. B., Numerical methods for unconstrained Optimization and nonlinear equations[M]. Englewood Cliffs: Prentiee-Hall Press, 1983,10- 180.
  • 6Ortega J. M.,Rheinboldt W. C.,Iterative solution of nonlinear equations in several variables[M]. Beijing:Academic Press, 1970* 1 - 200.
  • 7Griewank A., The,global,convergence of Broyden-like methods with a suitable line search. Austral[J].Anziam Journal, 1986,28(1): 75 - 92.
  • 8Li D. H.,Fukushima M.,A Derivative- Free line Search and Global Convergence of Broyden-like Meth-od for Nonlinear Equations[J]. Optimization Methods and Software, 1999,13: 181 - 201.
  • 9Li D. H.? Fukushima M., Smoothing Newton and Quasi - Newton Methods for Mixed Comple- mentarityProblems[J]. Computational Optimization and Applications,2000,17: 203- 230.
  • 10Li D. H.,Fukushima M.,A globally and superlinearly convergent Gauss -Newton based BFGS methodfor symmetric nonlinear equations. SIAM Journal on Numerical Analysis? 1999,37(1):152-172.

共引文献99

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部