期刊文献+

时间尺度上一类三阶变时滞阻尼动态方程的振荡性(英文) 被引量:1

Oscillation of certain third-order variable delay damped dynamic equations on time scales
下载PDF
导出
摘要 讨论了时间尺度上一类具阻尼项和非线性中立项的三阶非线性变时滞动态方程的振荡性,利用广义的Riccati变换和不等式技巧,获得了该方程的一些新的振荡准则,推广并改进了现有文献中的一些结果,本文的这些结果对于作为其特例的相应三阶差分方程和微分方程来说也是新的,最后通过例子来说明了文章中的这些结果的重要性. The oscillation for certain third-order nonlinear variable delay dynamic equa- tions with damping term and nonlinear neutral term on time scales is discussed in this article. By using the generalized Riccati transformation and inequality technique, some new oscillation criteria for the equations are established. Our results extend and improve some known results in the literature. Many of the results in this paper are new for the corresponding third-order difference equations and differential equations being as special cases. Some examples are given to illustrate the importance of our results.
作者 李默涵
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期11-24,共14页 Journal of East China Normal University(Natural Science)
基金 辽宁省高等学校优秀科技人才支持计划项目(LR2013062) 国家自然科学基金(60974144)
关键词 振荡性 时滞动态方程 RICCATI变换 时间尺度 阻尼项 oscillation delay dynamic equations Riccati transformation time scales damping term
  • 相关文献

参考文献18

  • 1BOHNER M, PETERSON A. Dynamic Equations on Time Scales, An Introduction with Applications [M Boston: Birkhauser. 2001.
  • 2AGARWAL R P, BOHNER M, LI W T. Nonoscillation and Oscillation: Theory for Functional Differential Equations [M]. New York: Marcel Dekker, 2004.
  • 3SAHINER Y. Oscillation of second order delay differential equations on time scales [J]. Nonlinear Analysis, TMA, 2005, 63: e1073-e1080.
  • 4AGARWAL R P, BOHNER M, SAKER S H. Oscillation of second order delay dynamic equations [J]. Canadian Applied Mathematics Quarterly, 2005, 13(1): 1-18.
  • 5ZHANG Q X, GAO L, LIU S H. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales (11) [J]. Sci Sin Math, 2011, 41(10): 885-896.
  • 6杨甲山.时间测度链上n阶非线性中立型时滞动力方程的振动性(英文)[J].应用数学,2013,26(4):816-827. 被引量:8
  • 7杨甲山,覃学文,张晓建.时间测度链上一类具阻尼项的二阶非线性中立型动力方程的振荡准则(英文)[J].应用数学,2015,28(2):439-448. 被引量:23
  • 8EP~BE L, PETERSON A, SAKER S H. Hille and Nehari type criteria for third-order dynamic equations [J]. J Math Anal Appl, 2007, 329(1): 112-131.
  • 9ERBE L, HASSAN T S, PETERSON A. Oscillation of third order nonlinear functional dynamic equations on time scales [J]. Differ Equ Dyn Syst, 2010, 18: 199-227.
  • 10HAN Z L, LIT X, SUN S R, et al. Oscillation criteria for third order nonlinear delay dynamic equations on time scales [J]. Ann Polon Math, 2010, 99(2): 143-156.

二级参考文献13

  • 1Hilger S. Analysis on measure chains a unified approach to continuous and discrete calculus[J]. Re- suits Math, 1990,18 : 18-56.
  • 2Bohner M, Peterson A. Dynamic Equations on Time-Scales:An Introduction with Applications[M]. Bos- ton: Birkh Auser, 2001.
  • 3Agarwal R P,Bohner M,LI Wantong. Nonoscillation and Oscillation: Theory for Functional Differential Equatious[M]. New York: Marcel Dekker, 2004.
  • 4Bohner M. Some oscillation criteria for first order delay dynamic equations[J]. Far East J. Appl. Math. , 2005,18 (3) :289-304.
  • 5Grace S R, Agarwal R P, Bohner M, et al. Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations[J]. Commun Nonlinear Sci. Numer Simul,2009,14:3463-3471.
  • 6Sahiner Y. Oscillation of second order delay differential equations on time scales[J]. Nonlinear Anal. TMA. ,2005,63 : 1073-1080.
  • 7Grace S R, Agarwal R P, Zafer A. Oscillation of higher order nonlinear dynamic equations on time scales [J] Advances in Difference Equations, 2012,2012 : 67-99.
  • 8A·图纳,S·库图苏,吴承平(译),张禄坤(校).时间尺度上的某些积分不等式[J].应用数学和力学,2008,29(1):21-26. 被引量:12
  • 9杨军,孙丽洁,徐利花.三阶非线性中立型变时滞动力方程的渐近性与振动性(英文)[J].应用数学,2010(3):508-515. 被引量:2
  • 10YANG Jun,WU Hui-ning.Forced Oscillation of Neutral Advanced Dynamic Equations with Positive and Negative Coeffcients on Time Scales[J].Chinese Quarterly Journal of Mathematics,2011,26(3):466-469. 被引量:1

共引文献29

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部