摘要
针对传统的BP算法收敛速度慢、精度较低的缺陷,本文以西津大坝26#点的50期观测数据为例,选择了4个变形因子,进行了改进的BP神经网络在大坝变形分析与预报中的应用与研究.在此基础上,比较了改进的BP神经网络与传统的BP神经网络的预报效果.结果表明:改进的BP神经网络无论在学习算法的收敛速度,还是在预报精度上,都得到了大幅度的提高,且有一定的推广意义.
In view of the deficiency of standard BP neural networks slow training speed and low precision, using the monitoring data of Xijin Dam, choosing 4 factors, analysis and prediction of dam deformation based on modified BP neural network is studied. On the basis, prediction effect of the modified BP neural network and standard BP neural network is compared. The results show that: the modified BP neural network is practical significant to be extended on training speed and prediction precision.
出处
《吉林建筑大学学报》
2016年第4期31-34,共4页
Journal of Jilin Jianzhu University
关键词
大坝
变形
神经网络
分析与预报
改进的BP网络
dam
deformation
neural network
analysis and prediction
modified BP network