期刊文献+

Virasoro代数导子的刻画

The Description of the Virasoro Algebra
下载PDF
导出
摘要 设L是以{Ln,C|n∈z}为基的Virasoro李代数.本文研究L的导子,首先证明了L的所有导子都是由零次导子和内导子构成.进而,计算出零次导子,从而得出了Virasoro李代数L的导子及1-上同调群. Let L be the Virasoro Lie algebra with basis {L.,C] n ∈ Z } . In lhis paper, the derivations of L are studied,first, it is showed that all of the derivations of L are composed by derivations with degree zero and inner derivations. And then, derivations with degree zero are worked out. Finally,the derivations of the Virasoro Lie algebra and the first cohomology group are obtained.
作者 方政蕊
出处 《德州学院学报》 2016年第4期35-37,共3页 Journal of Dezhou University
基金 武夷学院青年专项项目(xq201107)
关键词 VIRASORO代数 导子 1-上同调群. Virasoro algebra derivations the first cohomology group
  • 相关文献

参考文献5

二级参考文献33

  • 1姜翠波,杨国庆.无限维Heisenberg代数的导子代数[J].烟台师范学院学报(自然科学版),1996,12(2):85-88. 被引量:5
  • 2Ran SHEN,Yu Cai SU.Classification of Irreducible Weight Modules with a Finite-dimensional Weight Space over Twisted Heisenberg-Virasoro Algebra[J].Acta Mathematica Sinica,English Series,2007,23(1):189-192. 被引量:11
  • 3Kac V., Raina A., Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, Advanced Series in Mathematics, 1987, 2.
  • 4Zamolodchikov A. B., Infinite additional symmetries in two dimensional conformal quantum field theory, Theor. Math. Phys., 1985, 65: 1205-1213.
  • 5Kac V., Radul A., Quasi-finite highest weight modules over the Lie algebra of differential operators on the circle, Comm. Math. Phys., 1993, 157:429-457.
  • 6Patera J., Zassenhaus H., The higher rank Virasoro algebras, Comm. Math. Phys., 1991, 136: 1-14.
  • 7Arbarello E., De Concini C., Kac V. G., Procesi C., Moduli spaces of curves and representation theory, Comm. Math. Phys., 1988, 117:1-36.
  • 8Billig Y., Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canadian Mathematical Bulletin, 2003, 46: 529-537.
  • 9Jiang Q., Jiang C., Representations of the twisted Heisenberg Virasoro algebra and the full toroidal Lie algebras, Algebra Colloq., 2007, 14(1): 117-134.
  • 10Henkel M., Schott R., Stoimenov S., Unterberger J., The Poincare algebra in the context of ageing systems: Lie structure, representations, Appell systems and coherent states, arXiv: math-ph/0601028, 2006.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部