期刊文献+

一种基于Spark在线Web服务的高效低延迟调度资源算法 被引量:2

A high efficient and low-latency resource scheduling method for Spark on Web service
下载PDF
导出
摘要 Spark作为流行的分布式数据处理框架,其资源的调度方式和资源的利用率直接关系到集群计算处理的效率和速度。针对Spark资源调度问题,在Spark自身考虑的资源因素内存和空余核数下,提出新的调度算法。算法通过实时监视工作节点资源利用情况,增加对节点CPU处理速度和CPU剩余利用率的考虑,重新调度与分配资源,为Spark作为Web服务高并发请求、低延迟响应提供优化,还可以减少传统方式没有考虑的资源因素导致出现的资源利用倾斜现象,提高资源的利用率。实验表明,改进的资源调度算法有较好的效果。 The processing speed of Spark which is a big data processing structure is highly influenced by resource scheduling modes and whether we can utilize the resource sufficiently. Taking memories and the number of free cores into consideration, we propose a new scalable resource scheduling method. In this method, we monitor the resource utilization of nodes in real time and examine CPU processing speed and CPU residual utilization. This method can be used to optimize Spark Web service so as to meet the requirements of high concurrent request and low latency response and efficiently reduce the imbalance of resource utilization, thus improving resource utilization. Experimental results show that our method can obtain better results.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第8期1550-1556,共7页 Computer Engineering & Science
基金 国家自然科学基金(61272420)
关键词 SPARK WEB服务 资源监视 资源调度 Spark Web service resource monitoring resource scheduling
  • 相关文献

参考文献13

  • 1Shi Heng-liang.Task scheduling of cloud computing[D].Nanjing:Nanjing University of Science and Technology,2012.(in Chinese).
  • 2Wieczorek M, Hoheisel A, Prodan R. Towards a general model of the multi-criteria workflow scheduling on the grid[J].Future Generation Computer Systems,2009,25(3):237-256.
  • 3Ma Dan. Inter task dependency based parallel job scheduling algorithm[D].Wuhan:Huazhong University of Science and Technology,2007.(in Chinese).
  • 4Liang Qing-zhong. Multi-objective task scheduling algorithm based on hybrid cloud platform[D].Wuhan:China University of Geosciences,2015.(in Chinese).
  • 5Chen H,Wang F Z. Spark on entropy: A reliable & efficient scheduler for low-latency parallel jobs in heterogeneous cloud[C]∥Proc of IEEE International Workshop on Cloud-based Networks and Applications(CloudNA 2015), 2015:708-713.
  • 6Tang S,Lee B S,He B. Fair resource allocation for data-intensive computing in the cloud[J].IEEE Transactions on Services Computing,2016,99(1):1-1.
  • 7Chen H, Wang F, Na H. A cost-efficient and reliable resource allocation model based on cellular automaton entropy for cloud project scheduling[J].International Journal of Advanced Computer Science & Applications,2013,4(4):7-14.
  • 8Feng Lin. Implementation of memory optimization in cluster computing engine Spark[D].Beijing:Tsinghua University,2013.(in Chinese).
  • 9Marcel K,Erickson J. Cloudera impala: Real time queries in apache hadoop,for real[EB/OL].[2012-11-13].http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apachehadoop-for-real.
  • 10Topcuoglu H,Hariri S,Wu M Y. Performance-effective and low-complexity task scheduling for heterogeneous computing[J].IEEE Transactions on Parallel & Distributed Systems,2002,13(3):260-274.

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部