期刊文献+

基于加速收敛蜂群算法的资源感知调度器 被引量:1

Resource-aware scheduler based on bee colony algorithm with fast convergence
下载PDF
导出
摘要 为了能有效处理海量数据,进行关联分析、商业预测等,Hadoop分布式云计算平台应运而生。但随着Hadoop的广泛应用,其作业调度方面的不足也显现出来,现有的多种作业调度器存在参数设置复杂、启动时间长等缺陷。借助于人工蜂群算法的自组织性强、收敛速度快的优势,设计并实现了能实时检测Hadoop内部资源使用情况的资源感知调度器。相比于原有的作业调度器,该调度器具有参数设置少、启动速度快等优势。基准测试结果表明,该调度器在异构集群上,调度资源密集型作业比原有调度器快10%~20%左右。 In order to effectively deal with massive data, correlation analysis, business forecast and so on, the distributed cloud computing platform Hadoop has emerged. But with the wide application of Hadoop, the ioh scheduling problems become prominent. Many existing job schedulers have defects such as complexity of parameters setting, long start time and so on. Taking full advantages of the artificial bee colony algorithm in terms of strong self-organizing ability and fast convergence, we design and implement a resource-aware scheduler of Hadoop which can detect real-time internal resources utilization. Compared to those classical job schedulers, the proposed scheduler has advantages of few parameters and fast starting speed. Experiments on benchmark programs show that the proposal can schedule resource intensive work faster than the original one by 10% -20% on heterogeneous clusters.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第8期1595-1601,共7页 Computer Engineering & Science
基金 国家自然科学基金(61303029) 教育部留学回国启动基金([2012]1707) 湖北省自然科学基金(2014CFB836)
关键词 云计算 HADOOP 作业调度器 人工蜂群 资源感知 cloud computing Hadoop j ob scheduler artificial bee colony resource-aware
  • 相关文献

参考文献6

二级参考文献68

共引文献185

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部