期刊文献+

利用离散边界点判断的反向最远邻查询算法

A reverse furthest neighbor query algorithm using discrete boundary points for judgment
下载PDF
导出
摘要 目前大部分的反向最远邻查询方法对查询点是否存在反向最远邻的情况不进行判断,当查询点不存在反向最远邻的结果集时,也进行全部的操作,增加了查询消耗。针对这种情况,提出了利用离散边界点判断查询点是否存在反向最远邻结果集的方法,利用离散边界点、四分邻域区和半平面修剪策略进行过滤操作,并验证过滤后得到的结果集中数据点的有效性。实验测试了查询点的位置对查询的影响和数据集的大小以及数据分布对查询的影响,并与利用凸包判断的方法进行了对比分析。实验结果表明,当查询点不是离散边界点时,查询消耗几乎为0,当查询点移动到边界时,查询消耗增加。实验表明提出的方法可以得到查询点的反向最远邻结果集。 At present, most of reverse furthest neighbor (RFN) query methods do not judge whether the query point has a result set, so even when a RFN result set does not exist, all the operations are still done and time is vainly consumed. To effectively deal with the RFN query problems, we propose a method in which whether the query point having a RFN result set is judged by discrete boundary points. Discrete boundary points, four neighborhood areas and half space trimming strategy are employed to do the filtering, and then the result set obtained by the filtering is verified. The impact of the position of the query point, the size of data sets and data distribution on queries is tested, which is also compared with that of the judging method using convex. Experimental results show that when the query point is not a discrete boundary point, the time consumption for queries is almost zero; but when the query point is a discrete boundary point, the time consumption increases, which demonstrates that the proposed method is effective and can get the RFN results set.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第8期1682-1687,共6页 Computer Engineering & Science
基金 黑龙江省教育厅科学技术研究项目(12541731)
关键词 空间数据库 反向最远邻查询 离散边界点 半平面修剪策略 四分邻域区 spatial database reverse furthest neighbors query discrete boundary points half-space trimming strategy four neighborhood areas
  • 相关文献

参考文献4

二级参考文献40

  • 1Flip K, MuthttklJshnan S. Influence sets based on reverse nearest neighbor queries[ C]. SIGMOD, 2000, 201-212.
  • 2Tao Yu-fei, Yiu Man-lung. Mamoulis Nikos. Reverse nearest neighbor search in metric spaces [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(9), 1239-1252.
  • 3Sergio Cabello, Miguel Diaz-Banez J, Stefan Langerman, et al. Reverse facility location problems [ C ]. In: Proceedings of the 17 th Canadian Conference on Computational Geometry, 2005, 68-71.
  • 4Bohm C, Berchtold S, Keim D. Searching in high-dimensional spaces-index structures for improving the performance of multimedia databases[J]. ACM Computing Surveys, 2001, 33(3) : 322- 373.
  • 5Ciaccia P, Patella M, Zezula P. M-tree: an efficient access method for similarity search in metficspaces[ C]. VLDB, 1997, 426-435.
  • 6YAO B, LI F, Kumar P. Reverse furthest neighbors in spatial databases [C]. Proceedings of the IEEE International Conference on Data Engineering, 2009:664-675.
  • 7Korn F, Muthukrishnan S. Influence sets based on reverse nearest neighbor queries [C]. Proceedings of the ACM SIGMOD International Conference on Management of Data, 2000: 201-212.
  • 8James M Kang, Mohamed F Mokbel, Shashi Shekhar, et al. Continuous evaluation of monochromatic and bichromatic reverse nearest neighbors[C]. IEEE 23rd International Conference on Data Engineering, 2007: 806-815.
  • 9Muhammad Aamir Cheema, LIN Xuemin, ZHANG Ying, et al. Lazy updates: An efficient technique to continuously monitoring reverse kNN [J]. Proceedings of the VLDB Endowment, 2009, 2 (1): 1138-1149.
  • 10Mahady Hasan, Muhamrnad Aamir Cheema, Xuemin Lin, et al. Efficient construction of safe regions for moving kNN queries over dynamic datasets [M]. The University of New South Wales Australia SSTD, 2009: 373-379.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部