期刊文献+

MPCVD生长半导体金刚石材料的研究现状 被引量:9

Research Status of the Semiconductor Diamond Materials Grown by the MPCVD
下载PDF
导出
摘要 简要介绍了半导体金刚石材料优异的电学和光学性质、主要制备方法以及采用微波等离子体化学气相沉积(MPCVD)技术在制备高质量半导体金刚石材料方面的优势。重点就MPCVD技术在半导体金刚石材料的高速率生长、大尺寸生长、高质量生长以及电学掺杂等四个方面的研究现状进行了详细总结。详细探讨了目前半导体金刚石材料在大尺寸单晶金刚石衬底制备、高质量单晶金刚石外延层生长以及金刚石电学掺杂等方面还存在的一些基本问题。指出在大面积单晶金刚石衬底还没有实现突破的情况下,半导体金刚石材料和器件结构的生长模式。 The excellent electrical and optical properties and main preparation methods of the semiconductor diamond materials are briefly introduced,and the significant advantages of the microwave plasma chemical vapor deposition(MPCVD)technology for the preparation of high quality semiconductor diamond materials are presented.And then,the research status of the semiconductor diamond materials grown by the MPCVD technology is emphatically reviewed in detail from the four aspects of the high rate growth,large size growth,high quality growth and electrical doping.Besides,some basic issues of the semiconductor diamond materials are discussed in detail from the following aspects,i.e.the preparation of the large-size single crystal diamond,epitaxial layer growth of the high quality single crystal diamond and electrical doping of the diamond.Finally,the growth modes of the semiconductor diamond materials and device structures are pointed out in the case that there is no significant improvement in the single crystal diamond substrates with the relatively large area.
出处 《微纳电子技术》 北大核心 2016年第9期571-581,587,共12页 Micronanoelectronic Technology
基金 北京市科技计划项目(Z151100003315024)
关键词 金刚石 宽禁带 微波等离子体化学气相沉积(MPCVD) 同质外延生长 掺杂 diamond wide band gap microwave plasma chemical vapor deposition(MPCVD) homoepitaxial growth doping
  • 相关文献

参考文献81

  • 1JAN I,JOHAN H,ERIK J,et al.High carrier mobility in single-crystal plasma deposited diamond[J].Science,2002,297(5587):1670-1672.
  • 2BLAN V D,BORMASHOV V S,TARELKIN A A,et al.Power high-voltage and fast response schottky barrier diamond diodes[J].Diamond and Related Materials,2015,57(8):32-36.
  • 3KATO H,WOLFER M,SCHREYVOGEL C,et al.Tunable light emission from nitrogen-vacancy centers in single crystal diamond PIN diodes[J].Applied Physics Letters,2013,102(15):151101-1-151101-4.
  • 4HIROMITSU K,TOSHIHARU M,MASSAHIKO O,et al.Fabrication of bipolar junction transistor on(001)-oriented diamond by utilizing phosphorus-doped n-type diamond base[J].Diamond and Related Materials,2013,34(4):41-44.
  • 5TOKUYUKI T,YASUO K,TOSHIMICHI I.Schottky barrier height and thermal stability of p-diamond(100)Schottky interfaces[J].Thin Solid Films,2014,557(4):241-248.
  • 6CAMARCHIA V,CAPPELLUTI F,GHIONE G,et al.Accurate large-signal equivalent circuit of surface channel diamond FETs based on the Chalmers model[J].Diamond and Related Materials,2012,26(6):15-19.
  • 7MAKINO T,YOSHINO K,SAKAI N,et al.Enhancement in emission efficiency of diamond deep-ultraviolet light emitting diode[J].Apply Physics Letters,2011,99(6):061110-1-061110-3.
  • 8YANG N J,UETSUKA H,OSAWA E,et al.Vertically aligned nanowires from boron-doped diamond[J].Nano Lett,2008,8(11):3572-3576.
  • 9STEVEN P,GREENTREE A D.Diamond for quantum computing[J].Science,2008,320(5883):1601-1602.
  • 10PAUL W.The new diamond age?[J].Science,2008,319(5869):1490-1491.

共引文献2

同被引文献76

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部