期刊文献+

单晶硅微结构表面的制备及其减反射性能

Fabrication and Antireflection Performance of the Monocrystalline Silicon with Microstructure Surfaces
下载PDF
导出
摘要 利用聚苯乙烯胶体微球组装的单层胶体晶体阵列作为掩模板,分别采用反应离子刻蚀和等离子体刻蚀工艺在晶体硅表面构造出不同形态的微纳米结构,并研究不同刻蚀方法和不同刻蚀时间对微结构形态的影响作用。利用分光光度计测试得到微结构表面的反射光谱曲线。结果表明,在0.35-1.1μm太阳光有效吸收波段,单晶硅材料微结构表面的反射率显著降低,由于此时材料的透射率为零,材料在该波段的吸收得到有效增强。同时,具有规则微结构表面的减反射性能比无序微结构表面的减反射性能要更好一些。这为增强单晶硅对太阳能的有效吸收提供了一种简单可行的方法。 With monolayer colloidal crystal arrays assembled by polystyrene colloidal microspheres as masks,the micro-nanostructures with different morphologies on the crystalline silicon surface were constructed by using the reaction ion etching and plasma etching method.The influences of different etching methods and etching time on the surface morphology of the microstructures were investigated.The reflection spectra of the microstructure surfaces were measured by the spectrophotometer.The results show that the reflectivity of the monocrystalline silicon microstructure surface reduces significantly in 0.35-1.1μm sunlight effective absorption band.Because the transmissivity of the material is zero in this band,the absorption of the structure surfaces is effectively enhanced.Besides,the antireflection properties of the ordered microstructure surfaces are better than those of the disordered ones.This provides a simple and feasible method for enhancing the effective absorption of the monocrystalline silicon for the solar energy.
出处 《微纳电子技术》 北大核心 2016年第9期582-587,共6页 Micronanoelectronic Technology
基金 陕西省教育厅科研计划资助项目(15JK1115) 陕西省科技统筹创新工程计划资助项目(2014SZS16-K02) 陕西理工大学科研计划资助项目(SLGKYQD2-28)
关键词 单晶硅 微结构表面 聚苯乙烯胶体晶体 反应离子刻蚀 等离子体刻蚀 减反射 monocrystalline silicon microstructure surface polystyrene colloidal crystal reaction ion etching plasma etching antireflection
  • 相关文献

参考文献19

  • 1AL-MOHAMAD A.Solar cells based on two organic layers[J].Energy Conversion and Management,2004,45(17):2661-2665.
  • 2OSASA T,YAMAMOTO S,IWASAKI Y,et al.Photocarrier generation in organic thin-film solar cells with an organic heterojunction[J].Solar Energy Materials and Solar Cells,2006,90(10):1519-1526.
  • 3BRUTON T M.General trends about photovoltaics based on crystalline silicon[J].Solar Energy Materials and Solar Cells,2002,72(1/2/3/4):3-10.
  • 4STELZNER T,PIETSCH M,ANDRA G,et al.Silicon nanowire-based solar cells[J].Nanotechnology,2008,19(29):295203-1-295203-4.
  • 5MYONG S Y,SRIPRAPHA K,YASHIKI Y,et al.Siliconbased thin-film solar cells fabricated near the phase boundary by VHF PECVD technique[J].Solar Energy Materials and Solar Cells,2008,92(6):639-645.
  • 6HUBBARD S M,CRESS C D,BAILEY C G,et al.Effect of strain compensation on quantum dot enhanced GaAs solar cells[J].Applied Physics Letters,2008,92(12):123512-1-123512-3.
  • 7张秀清,李艳红,张超.太阳能电池研究进展[J].中国材料进展,2014,33(7):436-441. 被引量:48
  • 8ZHAO J H,WANG A H,GREEN M A,et al.19.8%efficient“honeycomb”textured multicrystalline and24.4%monocrystalline silicon solar cells[J].Applied Physics Letters,1998,73(14):1991-1993.
  • 9WENG B B,MA J G,WEI L,et al.Mid-infrared surfaceemitting photonic crystal microcavity light emitter on silicon[J].Applied Physics Letters,2010,97(23):231103-1-231103-3.
  • 10LEE Y C,HUANG C F,CHANG J Y,et al.Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings[J].Optics Express,2008,16(11):7969-7975.

二级参考文献16

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部