期刊文献+

两级轴流血泵基于血液损伤的数值分析 被引量:2

Numerical Analysis of Two-stage Axial Blood Pump Based on Blood Damage
原文传递
导出
摘要 植入式微型轴流血泵工作时的高叶轮转速会增加血液损伤的风险。本文试图通过将轴流血泵设计成两级的方式来减小发生溶血和血栓的风险。本文对两级及单级轴流血泵在进口流量5L/min、出口压力100mm Hg的工况下进行数值模拟,并对比了溶血程度及血小板活化程度。研究结果显示,两级轴流血泵溶血程度优于单级设计,而血小板活化程度差于单级设计。在溶血程度和血小板活化程度的指标上,两级低-高扬程叶轮组合血泵设计优于两级等扬程和两级高-低扬程叶轮组合血泵设计。在降低植入式微型轴流血泵的血液损伤风险方面,本文的研究结果可为其提供一定的理论基础和新的设计思路。 The implantable miniaturized axial blood pump works at a high rotational speed,which increases the risk of blood damage.In this article,we aimed to reduce the possibility of hemolysis and thrombosis by designing a twostage axial blood pump.Under the operation conditions of flow rate 5L/min and outlet pressure of 100 mm Hg,we carried out the numerical simulation on the two-stage and single-stage blood pumps to compare the hemolysis and platelet activation state.The results turned out that the hemolysis index of two-stage axial blood pump was better while the platelet activation state was worse than those of single stage design.On the index of hemolysis level and platelet activation state,the design of the two-stage pump with the low and high-head impeller combination was better than the two-stage pump with the equal heads,or the high and low-head impeller combination.In terms of reducing the risk of blood damage for implantable miniaturized axial blood pump,the research result can provide some theoretical basis and new design ideas.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2016年第4期686-690,697,共6页 Journal of Biomedical Engineering
基金 江苏省高层次创新创业人才引进计划基金资助项目 江苏省特聘教授计划基金资助项目 江苏省自然科学基金资助项目(BK20130539) 江苏大学高级专业人才科研启动基金资助项目(12JDG046)
关键词 两级轴流血泵 数值模拟 溶血 血栓 two-stage axial blood pump numerical simulation hemolysis thrombosis
  • 相关文献

参考文献18

  • 1ARVAND A, HORMES M, REUL H. A validated computa- tional fluid dynamics model to estimate hemolysis in a rotary blood pump [J]. ArtifOrgans, 2005, 29(7): 531-540.
  • 2CHIU W C, GIRDHAR G, XENOS M, et al. Thromboresis- tance comparison of the HeartMate II ventricular assist device with the device thrombogenicity emulation- optimized HeartAssist 5 VAD [J]. J Biomech Eng, 2014, 136 (2): 021014.
  • 3STOLINSKI J, ROSENBAUM C, FLAMENG W, et al. The heart pump interaction: effects of a microaxial blood pump [J]. Int J Artif Organs, 2002, 25(11): 1082-1088.
  • 4ARORA D, BEHR M, PASQUALI M. A tensor-based measure for estimating blood damage [J]. Artif Organs, 2004, 28(11): 1002-1015.
  • 5YELESWARAPU K K, ANTAKI J F, KAMENEVA M V, et al. A mathematical model for shear-induced hemolysis [J]. Artif Organs, 1995, 19(7): 576-582.
  • 6LU Qijin, HOFFERBERT B V, KOO G, et al. In vitro shear stress-induced platelet activation: sensitivity of human and bovine blood[J]. ArtifOrgans, 2013, 37(10): 894-903.
  • 7LIMA B, MACK M, GONZALEZ-STAWINSKI G V. Ven- tricular assist devices: the future is now[J]. Trends Cardio- vasc Med, 2015, 25(4): 360-369.
  • 8APEL J, PAUL R, KI,AUS S, et al. Assessment of hemoly- sis related quantities in a microaxial blood pump by computa- tional fluid dynamics [J]. Artif Organs, 2001, 25(5): 341- 347.
  • 9YANO T, SEKINE K, MITOH A, et al. An estimation method of hemolysis within an axial flow blood pump by com- putational fluid dynamics analysis [J]. Artif Organs, 2003, 27(10) : 920-925.
  • 10ZHANG Yan, XUE Song, GUI Xing-min, et al. A novel in tegrated rotor of axial blood flow pump designed with compu tational fluid dynamics [J]. Artif Organs, 2007, 31(7) : 580- 585.

二级参考文献9

  • 1钱坤喜,K. Mottaghy,H. Schmid-Schonbein.流线型设计在人工心脏的应用[J].北京生物医学工程,1990,9(3):159-164. 被引量:6
  • 2NiimiH.切变流动中红细胞膜上的交变载荷:溶血的潜在原因[J].生物医学工程国外分册,1986,9(4):292-296.
  • 3Mitoh A,Yano T,Sekine K,et al.Computational fluid dynamics analysis of an intra-cardiac axial flow pump[J].Artificial Organs,2003,27(1):34-40.
  • 4Song Xinwei,Throckmorton AL,Wood HG,et al.Computational fluid dynamics prediction of blood damage in a centrifugal pump[J].Artificial Organs,2003,27(10):938-941.
  • 5Yano T,Sekine K,Mitoh A,et al.An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis[J].Artificial Organs,2003,27(10):920-925.
  • 6Bludszuweit C.Model for a general mechanical blood damage prediction[J].Artificial Organs,1995,19(7):583-589.
  • 7Giersiepen M,Wurzinger LJ,Opitz R,et al.Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves[J].Artificial Organs,1990,5(13):300-306.
  • 8Yeleswarapu KK,Antaki JG,Kameneva MB,et al.A mathematical model for shear-induced hemolysis[J].Artificial Organs,1995,19 (7):576-582.
  • 9Patankar SV.Numerical heat transfer and fluid flow[M].McGraw-Hill,1980.130-157.

共引文献7

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部