期刊文献+

基于分位数回归的交强险费率厘定研究 被引量:3

An Analysis of Ratemaking of Auto Compulsory Liability Insurance Using Quantile Regression
原文传递
导出
摘要 交强险具有多种保险责任的特点为其费率厘定带来新问题。本文通过索赔分类的思想对我国某地区交强险的保单数据进行分析,探讨用于分类费率厘定的因子是否能够真实反映被保险人在人身伤害或财产损失类索赔中呈现的风险特征。运用零调整的分位数回归,我们发现现有费率因子对于这两类索赔的影响有显著区别,并且交强险目前的费率厘定方式无法真实反映被保险人的风险水平。本文提出费率因子对于不同损失程度的索赔应具有一致性效应,并据此来评价费率厘定的合理性。本文建议将两类索赔分开厘定费率或加入新费率因子等方案可以改进目前的费率厘定方法。 The multiple coverages of auto compulsory liability insurance induces new problems in ratemaking. This study made an empirical analysis of China auto compulsory liability insurance claim data under the methodology of claim classification, to discuss whether rating factors used for risk classification could reflect the actual risk characteristics of insureds on body injury and property damage respectively. Using zero-adjusted quantile regression, we found that existing rating factors had significantly distinct influences on two types of claims. And current ratemaking couldn't reflect the actual risk level of insureds properly. The study proposed the principle that rating factors should have consistent effects on claims study suggested to separate two types of regardless of their level of losses to verify the rationality of ratemaking. The claims for ratemaking or add new rating factors to optimize the current ratemaking method.
作者 蒲适 陈秉正
出处 《保险研究》 CSSCI 北大核心 2016年第6期61-72,共12页 Insurance Studies
关键词 交强险 分位数回归 风险分类 LOGISTIC回归 Auto Compulsory Liability Insurance Quantile Regression claim classification Logistic Regression
  • 相关文献

参考文献12

  • 1陈建宝,丁军军.分位数回归技术综述[J].统计与信息论坛,2008,23(3):89-96. 被引量:141
  • 2刘红岩,高洪忠.交强险经营结果影响因素分析[J].统计与决策,2010,26(18):91-93. 被引量:7
  • 3孟生旺.交强险的经营结果和费率结构分析[J].统计研究,2008,25(4):66-71. 被引量:24
  • 4庹国柱.里性看待“交强险”[J].中国保险,2007(8):37-39. 被引量:2
  • 5Buchinsky, M. Recent Advances in Quantile Regression Models:A Practical Guideline for Empirical Research [J]. Journal of Human Resources, 1998,33,88 - 126.
  • 6Fahrmeir, L. , and Tutz G. Multivariate Statistical Modeling Based on Generalized Linear Models [M]. 2001, New York, Springer - Verlag.
  • 7Frees EW, Valdez EA. Hierarchical Insurance Claims Modeling [J]. Journal of the American Statistical Asso- ciation.2008.103 C 484) : 1457 - 1469.
  • 8Koenker R,Bassett G. Regression Quantiles [J]. Econometrica,1978,46(1) 33 -50.
  • 9Kudryavtsev AA. Using Quantile Regression for Rate - Making [J]. Insurance Mathematics and Economics, 2009,45 (2) :296 - 304.
  • 10Pinquet,J. Designing Optimal Bonus - Malus Systems from Different Types of Claims [J]. ASTIN Bulletin, 1998,28,205 - 229.

二级参考文献69

  • 1丁邦宁.关于预测当年车险满期赔付率的研究[J].上海保险,2004(7):9-12. 被引量:1
  • 2高洪忠.再论机动车辆保险的精算模型及其应用[J].经济数学,2003,20(1):34-40. 被引量:4
  • 3John B. Conners, Sholom Fedblum. Personal Automobile: Cost Drivers, Pricing and Public Policy[C].Proceedings of the Casualty Actuarial Society,1998.
  • 4Martin F. Grace, Robert W. Klein, Richard D., Phillips, Auto Insurance Reform: Salvation in South Carolina[C].Georgia State University Working Paper,2001.
  • 5Nicholas E, Frangos, Spyridon D. Vrontos. Design of Optimal Bonus-Malus Systems With a Frequency and a Severity Component on a Individual Basis in Automobile Insurance, Astin Bulletin,2001,31 ( 1 ).
  • 6Stephen P.D'Arcy. Insurance Price Deregulation[C].The Illinois Experience, Insurance Rate Regulation Conference Brooking Institution,2001,5.
  • 7Taylor J. A quantile regression approach to qstimating the distribution of multi-period returns [J ]. Journal of Derivatives, 1999 (Fall) : 64 - 78.
  • 8Chemozhukov V, Umantsev L. Conditional value at risk: aspects of modelling and estimation [J ]. Empirical Economics, 2001, 3: 271-292.
  • 9Chen M Y,Chen J E. Statistical inferences in quantile regression models: primal and dual aspects [R]. Manuscript, 2001.
  • 10Georios K, Leonidas Z. Conditional autoregression quantiles: estimating market risk for major stock markets [C]. The Second International Symposiunl "Advances in Financial Forecasting", 2005.

共引文献164

同被引文献45

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部