期刊文献+

Calculation of the ex-core neutron noise induced by individual fuel assembly vibrations in two PWR cores

Calculation of the ex-core neutron noise induced by individual fuel assembly vibrations in two PWR cores
下载PDF
导出
摘要 Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor(PWR) cores has been conducted to investigate the effect of cycle burnup on the properties of the ex-core detector noise. An extension of the method and the computational models of a previous work have been applied to two different PWR cores to examine a hypothesis that fuel assembly vibrations cause the corresponding peak in the auto power spectral density(APSD) increase during the cycle. Stochastic vibrations along a random two-dimensional trajectory of individual fuel assemblies were assumed to occur at different locations in the cores. Two models regarding the displacement amplitude of the vibrating assembly have been considered to determine the noise source. Then, the APSD of the ex-core detector noise was evaluated at three burnup steps. The results show that there is no monotonic tendency of the change in the APSD of ex-core detector; however, the increase in APSD occurs predominantly for peripheral assemblies. When assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core, the effect of the peripheral assemblies dominates the ex-core neutron noise.This behaviour was found similar in both cores. Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor (PWR) cores has been conducted to investigate the effect of cycle burnup on the properties of the ex-core detector noise. An extension of the method and the computational models of a previous work have been applied to two different PWR cores to examine a hypothesis that fuel assembly vibrations cause the corresponding peak in the auto power spectral density (APSD) increase during the cycle. Stochastic vibrations along a random two-dimensional trajectory of individual fuel assemblies were assumed to occur at different locations in the cores. Two models regarding the displacement amplitude of the vibrating assembly have been considered to determine the noise source. Then, the APSD of the ex-core detector noise was evaluated at three burnup steps. The results show that there is no monotonic tendency of the change in the APSD of ex-core detector; however, the increase in APSD occurs predominantly for peripheral assemblies. When assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core, the effect of the peripheral assemblies dominates the ex-core neutron noise. This behaviour was found similar in both cores.
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第4期67-77,共11页 核技术(英文)
基金 supported by Vietnam National Foundation for Science and Technology Development(NAFOSTED)(No.103.04-2014.79)
关键词 燃料组件 随机振动 中子噪声 计算模型 压水堆 堆芯 功率谱密度 压水反应堆 Keywords Neutron noise ; Fuel vibration ; Ex-core noise ;APSD ; PWR
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部