期刊文献+

疏水性Fe_3O_4纳米粒子与双亲性嵌段共聚物(PVP-b-PMMA)的自组装

Self-assembly of hydrophobic Fe_3O_4 nanoparticles with amphiphilic block copolymer PVP-b-PMMA
下载PDF
导出
摘要 以乙酰丙酮铁为铁源,用热分解法制备疏水性四氧化三铁(Fe_3O_4)纳米粒子,将N-乙烯基吡咯烷酮与甲基丙烯酸甲酯嵌段共聚物(PVP-b-PMMA)与疏水性的Fe_3O_4纳米粒子进行自组装,并采用透射电镜(TEM)、红外光谱(FT-IR)、热重(TGA)分析和动态光散射(DLS)等方法对产物结构进行表征.结果表明:所合成的Fe_3O_4纳米粒子表面物理吸附和化学键合了一层油胺分子,在二甲基甲酰胺(DMF)溶液中具有很好的分散性,且平均粒径为8.2 nm;在自组装过程中疏水性的Fe_3O_4纳米粒子能够很好地进入到胶束的内部,并均匀分散在胶束的内腔中. The hydrophobic ferriferrous oxide(Fe3O4) nanoparticles was prepared by thermal decomposition method and iron (Ⅲ) acetylacetonate as the iron source. The hydrophobic Fe3O4 nanoparticles was self-assemblied with block copolymer(PVP-b-PMMA) synthesised by N-vinyl pyrrolidone and methyl methacrylate. The transmission elec-tron microscope (TEM), Fourier transform infrared spectrom (FT-IR), thermogravimetric analysis (TGA) and dynamic light scattering(DLS) Ⅲtechnologies were used to characterize the structure of the micelle self-assembled by Fe3O4 nanoparticles and PMMA-b-PVP copolymer. Experimental results showed that surface of Fe3O4 nanoparticles was covered by a layer of oleylamine molecule which was physical adsorbed and chemical bonded with it, and just the oleyl-molecule layer enable Fe3O4 nanoparticles can be dispersed well in dimethylformamide (DMF) solvent and the average diameter of Fe3O4 nanoparticles is 8.2 nm. In the process of self-assemble, the hydrophobic Fe3O4 nanoparticles were well encapsulated into the interior of the micelle and evenly dispersed uni-formly in the core of micelle.
出处 《天津工业大学学报》 CAS 北大核心 2016年第4期54-58,共5页 Journal of Tiangong University
基金 国家自然科学基金资助项目(51103103) 国家高科技研究发展计划项目(2007AA03Z359)
关键词 疏水性 FE3O4纳米粒子 乙酰丙酮铁 热分解 双亲性嵌段共聚物 自组装 hydrophobic Fe3O4 nanoparticles iron (Ⅲ) acetylacetonate thermal decomposition amphiphilic block copolymer self-assembly
  • 相关文献

参考文献3

二级参考文献47

  • 1张玉忠,李然,李泓,肖长发,Zandrie Borneman,Geert-Henk Koops,Matthias Wessling.树脂填充EVAL纤维吸附剂的制备及其吸附性能表征[J].离子交换与吸附,2005,21(3):224-232. 被引量:4
  • 2Matsuyama H, Berghmans S, Lloyd D R. Formation of hydrophilic microporous membranes via thermally induced phase separation[J]. J Membr Sci, 1998, 142:213 -224.
  • 3Toyomoto K, Higuchi A. Microfiltration and ultrafiltration[M]. New York:Marcel Dekker Inc, 1992. 289 -331.
  • 4Kulkarni S S, Funk E W, Li N N. Ultrafiltration membranes[ M]. New York: Van Nostrand Reinhold, 1992.409 -431.
  • 5Zeman L J, Zydney A L. Microfiltration and Ultrafiltration[ M]. New York: Marcel Dekker Inc,1996.
  • 6Matsuyama H, Kobayashi K, Maki T, et al. Effect of the ethylene content of poly (ethylene-co-vinyl alcohol)on the formation of microporous membranes via thermally induced phase separation [J]. J App Polym Sci, 2001,82: 2 583 -2 589.
  • 7YoungT H, Yao C H, Sun J S, et al. The effect of morphology variety of EVAL membranes on the behavior of myoblasts in virtro[J]. Biomaterials,1998, 19(7): 717 -724.
  • 8Young T H, Wang D M, Hsieh C C, et al. The effect of the second phase inversion on microstructures in phase inversion EVAL membranes[ J]. J Membr Sci, 1998,146:169 - 178.
  • 9Okaya T, Ikari K. Polyvinyl Alcohol Developments [ M ]:New York: Wiley, 1992.
  • 10Lin D T, Cheng L P, Kang Y J, et al. Effects of precipitation conditions on the membrane morphology and permeation characteristics[J]. J Membr Sci, 1998,140:185 - 194.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部