期刊文献+

一种显式Hermite曲线插值方法 被引量:4

An Explicit Hermite Curve Interpolation
下载PDF
导出
摘要 Hermite曲线插值要求插值曲线不仅严格通过型值点,还要满足型值点处的各阶导数切触条件.针对传统隐式或半显式Hermite曲线插值方法中求解复杂、非严格插值等问题,提出一种显式Hermite曲线插值方法.首先构造了一类基数型Hermite插值基函数,该基函数具有局部支集、对称性、高阶连续等性质;然后将该基函数与给定的Hermite插值条件调配,得到一条严格满足各阶切触条件的k次样条曲线.实验结果表明,利用文中方法得到的插值曲线不仅严格满足插值条件,还具有光滑的曲率与较高的插值精度;与传统方法相比,该方法具有插值过程简单、无需求解方程组的优点. Hermite curve interpolation requires the result curve interpolating the given points as well as various derivatives at these points. The traditional implicit and semi-explicit methods have the problems on difficult solving and inexact interpolation. With respect to these defects, a novel explicit Hermite curve interpolation method is proposed in this paper. Firstly, we constructed a class of cardinal type Hermite basis functions. Then they will be blended with all the given interpolation conditions, and a spline curve of degree k will be obtained directly which satisfies all-order derivatives. The experimental results show that our result curves have smooth curvature and high interpolation precision. Compared with the traditional methods, our method has a simper interpolation process without solving equations.
作者 陈伟 蔡占川
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第8期1326-1332,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展计划项目(2011CB302400) 国家自然科学基金(61170320 61272026 61402201) 澳门科技发展基金项目(084/2012/A3 110/2014/A3) 浙江大学CAD&CG国家重点实验室开放课题(A1513 A1609) 中央高校基本科研业务费专项资金(JUSRP11416)
关键词 HERMITE插值 显式基函数 样条曲线 Hermite interpolation explicit basis function spline curve
  • 相关文献

参考文献2

二级参考文献6

  • 1de Boor C, Hollig K, Sabin M. High accuracy geometric Hermite interpolation[J]. Computer Aided Geometric Design, 1987, 4(4): 269~278
  • 2吴宗敏 黄毅.参数有理三次插值[J].高等学校计算数学学报(计算几何专集),1994,:98-103.
  • 3Hollig K, Koch J. Geometric Hermite interpolation[J]. Computer Aided Geometric Design, 1995, 12(6): 567~580
  • 4Hollig K, Koch J. Geometric Hermite interpolation with maximal order and smoothness[J]. Computer Aided Geometric Design, 1996, 13(8): 681~695
  • 5Reif U. On the local existence of the quadratic geometric Hermite interpolant[J]. Computer Aided Geometric Design, 1999, 16(3): 217~221
  • 6Xu Lianghong, Shi Jianhong. Geometric Hermite interpolation for space curves[J]. Computer Aided Geometric Design, 2001, 18(9): 817~829

共引文献6

同被引文献41

引证文献4

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部