期刊文献+

几种最优投资组合在有效边界上相对位置 被引量:2

Relative location of optimal portfolios on efficient frontier
下载PDF
导出
摘要 讨论了均值-VaR、均值-AVaR、方差-均值比等风险-收益投资组合优化模型的最优解的有效性.基于Markowitz均值-方差模型和有效边界理论,证明了如果各模型的最优投资组合存在,则一定位于均值-方差有效边界上.计算了各投资组合模型最优解处的均值和标准差,根据计算结果讨论了各模型的最优投资组合在有效边界上的位置.特别地,均值-VaR模型的最优投资组合在有效边界上的位置与置信水平有关. The validities of the optimal solutions of reward-risk portfolio optimization models are discussed,such as mean-VaR model,mean-AVaR model,mean-variance ratio model,etc..It is proved that based on Markowitz mean-variance model and efficient frontier theory,if the optimal portfolios exist,they must be located on the efficient frontier of mean-variance.The mean and standard deviation of these models' optimal solutions are calculated.According to the calculated results, the relative location of the optimal portfolios on the efficient frontier is discussed. Particularly,the location of mean-VaR model's optimal portfolio on the efficient frontier varies with confidence levels.
作者 周伊佳 于波
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2016年第4期420-426,共7页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(11171051 重大计划91230103) 中央高校基本科研业务费专项资金资助项目(DUT15RC(3)037)
关键词 投资组合优化模型 最优投资组合 有效边界 portfolio optimization model optimal portfolio efficient frontier
  • 相关文献

参考文献5

二级参考文献34

  • 1荣喜民,武丹丹,张奎廷.基于均值-VaR的投资组合最优化[J].数理统计与管理,2005,24(5):96-103. 被引量:23
  • 2安起光,王厚杰,张文清.基于机会约束的均值—VaR投资组合模型研究[J].山东大学学报(理学版),2005,40(6):49-53. 被引量:4
  • 3J P Morgan.Risk Metrics-Technical Document(4 th ed. ) [ M ] . New York: Morgan Guaranty Trust Company, 1996.
  • 4Artzner P, Delbaen F, Eber J H, Heah D. Thinking Coherently: Risk [ J ] . Mathematical Finance, 1997,(10) :33-49.
  • 5Artzner P, Delbaen F, Eber J H, Heah D. Coherent Measure of Risk [ J ] . Mathematical Finance, 1999,9(3): 203-228.
  • 6Carlo A, Claudio N, Carlo S. Expected Shortfall as a Tool for Financial Risk Management [ DB/OL ]. http: / / www. gloriamundi. org/VaR/VW, 200 1.
  • 7Frittelli, Rosazza Gianin. Putting Order in Risk Measures [ A ]. Szego G. Beyond VaR (Special Issue ) [ C ]. Journal of Banking & Finance, 2002,26(6): 263-292.
  • 8Rockfeller T, Uryasev S. Optimization of Conditional VaR [ J ]. Journal of Risk,2000,2(3) :21-24.
  • 9Rflung G Ch. Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk [ A ]. Uryasev S. Probabilistic Constrained Optimizatio: Methodology and Application [ C ]. Boston: Kluwer. Academic Publishers, 2000.
  • 10Anderson F, Mausser H, Rosen D, Urasev S. Credit Risk Optimization with Conditional Value-at-Risk Criterion [ M ]. Math. Progam. Ser. B, 2000. 273-291.

共引文献52

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部