期刊文献+

三维不可压Euler方程的动力学

Dynamics of the 3D Incompressible Euler Equation
下载PDF
导出
摘要 考虑三维不可压Euler方程的一些物理量沿质点轨迹的演化情况。Chae已考虑了涡量沿质点轨迹增加的情景,文章考虑令解衰减、系统稳定的另一种情景,进而把系统的演化情况(包括它在两种情景间的转化、爆破或衰减)作完整的描述。推广了Chae已考虑的情景的结果,得到更强的结论。 A study is made of the evolutions along particle trajectories of some physical quantities of the three dimensional incompressible Euler equation. In the literature, Chae has considered the scenario in which the magnitude of the vorticity increases along particle trajectories. In this article, a discussion is made of another scenario which results in decaying solutions and stable systems. Consequent- ly, a complete description of the evolution of the Euler system can be given, including the changing of scenarios, blowing up and decay of the solution. Chae' s results in the scenario he has considered are al- so generalized.
作者 李丹 邓大文
出处 《咸阳师范学院学报》 2016年第4期33-37,共5页 Journal of Xianyang Normal University
基金 国家自然科学基金项目(11371300)
关键词 三维不可压Euler方程 局部光滑解 爆破 渐近性质 3D incompressible Euler equation local smooth solution blow-up asymptotic properties
  • 相关文献

参考文献10

  • 1BEALE J T, KATO T, MAJDA A. Remarks on the break- down of smooth solutions for the 3-D Euler equations[J]. Communications in Mathematical Physics, 1984, 94 (1) : 61-66.
  • 2PONCE G. Remarks on a paper by J. T. Beale, T. Kato and A. Majda[J].Communications in Mathematical Physics, 1985,98(3) :349-353.
  • 3CONSTANTIN P, FEFFERMAN C, MAJDA A J. Geometric constraints on potentially singular solutions for the 3-D Eul- er equations[J].Communications in Partial Differential Equa- tions, 1996,21(3-4) :559-571.
  • 4CHAE D. On the lagrangian dynamics for the 3D incom- pressible euler equations[J].Communications in Mathemati- cal Physics, 2007,269(2) : 557-569.
  • 5GUO W W, TANG T M. Evolutions of the momentum densi- ty, deformation tensor and the nonlocal term of the Camas- sa-Holm equation[J]. Nonlinear Analysis, 2013, 88 (9) : 16-23.
  • 6CONSTANTIN A. Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J]. Annales De Linstitut Fourier, 2000,50(2 ) :321-362.
  • 7RODRIGUEZ-BLANCO G. On the Cauchy problem for the Camassa-Holm equation[J].Nonlinear Analysis Theory Meth- otts& Applications, 2001,46(3) : 309-327.
  • 8LAI S, WU Y. Global solutions and blow-up phenomena to a shallow water equation[J] .Journal of Differential Equations, 2010,249(3) : 693-706.
  • 9CHAE D, CONSTANTIN P, WU J.Deformation and symme- try in the inviscid SQG and the 3D Euler equations[J]. Jour- nal of Nonlinear Science, 2012,22 (5) : 665-688.
  • 10MAJDA A J, BERTOZZI A. Vorticity and ncompressible low[M].Cambridge: Cambridge University Press, 2002: 170.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部