期刊文献+

信息检索结果隐式多样化排序方法研究

Research and Analysis on the Implicit Diversification Ranking Method for Information Retrieval
下载PDF
导出
摘要 针对信息检索隐式多样化算法展开研究。介绍了检索结果重排序中的最大边际相关度(MMR)算法、相对熵(KL)算法、现代投资组合理论(MPT)3个隐式多样化算法,采用此3个算法对所选的已排序的文档数据集进行重排,通过对排序结果进行评价来对比三者的性能。得出隐式多样化方法中当相关性和多样性以一定比例的线性组合时,会使最终的检索结果在一些评价指标上相对于原始结果有所提高。 Research on implicit diversification algorithm for information retrieval. On this basis, the documents are diversified. In this paper, first we introduce the maximum marginal relevance (MMR) method, Kullback - Leibler divergence (KL) method and modem portfolio theory ( MPT), then use these three methods to re - rank data sets, and then evaluate and compare the performance of the three methods. Finally, it is concluded that the implicit diversification methods can improve the performance compare with the original results when the correlation and diversity in a certain percentage of linear combination.
出处 《电子科技》 2016年第8期106-109,共4页 Electronic Science and Technology
关键词 隐式多样化 信息检索 线性组合 MMR KL implicit diversification information retrieval linear combination MMR KL
  • 相关文献

参考文献14

  • 1Boyce B. Beyond topicality: A two stage view of relevance and the retrieval process [ J ]. Information Processing & Manage- ment,1982,18( 3 ) :105 - 109.
  • 2Goffman W. A searching procedure for information retrieval [ J]. Information Storage & Retrieval, 1964,2 (64):73 -78.
  • 3Charles L A Clarke, Maheedhar Kolla, Gordon V Cormack, et al. Novelty and diversity in information retrieval evaluation [C ]. Singapore: The 31st Annual International ACM SIGIR,2008.
  • 4Zhai C, Jamie Callan. Risk minimization and language model- ing in text retrieval[ J]. Acm Sigir Forum,2002,36(2) :100 -101.
  • 5Carbonell J, Goldstein J. The use of MMR, diversity - based.reranking for reordering documents and producing summaries [ C]. Beijing: Proceedings of the 21st Annum International ACM SIGIR Conference on Research and Development in In- formation Retrieval : ACM, 1998.
  • 6Chen H, Karger D R. Less is more: probabilistic models for retrieving fewer relevant documents [ C ]. Taipei : Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval: ACM ,2006.
  • 7Radlinski F, Kleinberg R, Joachims T. Learning diverse rank- ings with multi-armed bandits [ C ]. Helsinki, Finland : Ap- pearing in Proceedings of the 25th International Conference on Machine Learning, ICML,2008.
  • 8Bookstein A. Information retrieval: A sequential learning process [ J ]. Journal of the American Society for Information Science, 1983,34 (5) :331 - 342.
  • 9Agrawal R, Gollapudi S, Halverson A, et al. Diversifying search results [ C ]. Barcelona, Spain: WSDM ' 09 ACM, 2009.
  • 10Carterette B, Chandar P. Probabilistic models of ranking no- vel documents for faceted topic retrieval [ C ]. Hong Kong: CIKM' 09,ACM,2009.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部