期刊文献+

一种改进的各向异性扩散模型 被引量:1

A New Modified Anisotropic Diffusion Equations
下载PDF
导出
摘要 各项异性扩散方程是一种经典的图像去噪方法,但该方法在去除噪声的过程中会造成一定程度的模糊边缘。对此文中提出了一种基于改进的各向异性扩散方程的图像去噪方法,通过在其能量泛函的目标函数中添加残差项,使能量泛函的极小解更加接近原始的函数,可取得比其更好的去噪效果。文中方法可看作是各项异性扩散方程和全变差模型的结合。实验表明,新提出的方程相对经典的方程有较好的边界处理效果和更高的信噪比。 The anisotropic diffusion equation is a classical image denoising method, but this method can cause a certain degree of fuzzy edge in the process of removing noise. This paper presents a based on improved anisotropic diffusion equation for image to denoising method, through in the objective function of the energy functional add residuals and make the energy functional minimizer is closer to the original function can get better denoising effect. The method can ments show be regarded as the combination of the anisotropic diffusion equation and the total variation model. Experithat the new equation has better boundary treatment effect and higher signal to noise ratio than the classical equation.
作者 刘彪
出处 《电子科技》 2016年第8期130-132,共3页 Electronic Science and Technology
关键词 各项异性扩散 图像光滑化 能量泛函 偏微分方程 anisotropic diffusion image smoothing energy functional differential equation
  • 相关文献

参考文献9

  • 1Buades A,Coll B,Morel J M. hnage denoising methods with A new nonlocal principle [ J ]. SIAM Review, 2010,52 ( I ) : 113 - 147.
  • 2Buades A, Coil B, Morel J M. A review of image denoising al- gorithms, with a new one[J]. Maltiseale Modeling & Simu- lation ,2005,4 ( 2 ) : 490 - 530.
  • 3Lindenbaum M, Fischer M, Bruckstein A. On Gabor's eontri- bution to image enhancement[ J I. Pattern Recognition, 1994, 27(1):1 -8.
  • 4Perona P, Malik J. Scale - space and edge detection using an- isotropic diffusion[ J 1- IEEE Transactions on Pattern Analysis and Maebine Intelligence, 1990,12 ( 7 ) : 629 - 639.
  • 5Rudin L l,Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [ J ]. Physiea D : Nonlinear Phenom- ena,1992,60( 1 ) : 259 -268.
  • 6Osher S,So16 A, Vese L. hnage decomposition and restoration using total variation minimization and tbe H 1 [ J ]. Multiscale Modeling & Simulation ,2003,1 ( 3 ) :349 - 370.
  • 7Cart6 F, l,ions P L, Morel J M,el al. hnage selective smoot- hing and edge detection by nonlinear diffusion [ J ]. SIAM Journal on Numerical Analysis, 1992,29( 1 ) :182 - 193.
  • 8Weiekert J. Anisotropie diffusiml in image proeessing [ M ]. Stuttgart : Teubner, 1998.
  • 9Weickert J, Romeny B M T H, Viergever M. Efficient and re- liable sehemes for nonlinear diffusion f~ltering [ J ]. IEEE Transactions on Image Processing, 1998,7 (3) :398 -410.

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部