期刊文献+

基于GA-BPNN的MPPT控制方法与P&O的比较 被引量:1

Comparison of MPPT Control Methods Based on GA-BPNN and Perturb & Observe Algorithm
下载PDF
导出
摘要 针对传统光伏电池阵列控制方式在复杂天气环境下,对最大功率点跟踪效果不理想的现象。设计了一种基于GA-BPNN的改进型恒压光伏MPPT控制算法,并通过搭建基于GA-BPNN的改进型恒压光伏MPPT的仿真模型,再与传统P&O控制方法进行比较分析。仿真结果证明,该算法能准确快速地在复杂天气环境下进行最大功率点跟踪,且性能稳定。 This paper introduces a modified constant pressure PV MPPT control algorithm based on GA-BPNN for better power point tracking effect than traditional control method under complex weather conditions. The simulation model of a modified constant pressure PV MPPT control algorithm based on GA-BPNN is constructed and compared with the P&O control method. The result shows that the algorithm can track maximum power point accurately and quickly with better stability and higher precision.
出处 《电子科技》 2016年第8期145-148,共4页 Electronic Science and Technology
基金 沪江基金资助项目(B1402/D1402)
关键词 光伏电池阵列 BP神经网络 遗传算法 干扰观测法 photovohaic array BP neural network genetic algorithm disturbance observation method
  • 相关文献

参考文献10

二级参考文献57

  • 1丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 2崔岩,蔡炳煌,李大勇,胡宏勋,董静微.太阳能光伏系统MPPT控制算法的对比研究[J].太阳能学报,2006,27(6):535-539. 被引量:177
  • 3牛向阳.基于遗传算法和BP算法的混合算法[J].河南科技大学学报(自然科学版),2007,28(1):46-48. 被引量:13
  • 4周明 孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999.161-166.
  • 5FAN S, LIAO J R, YOKYAMA R, et al. Forecasting the wind generation using a two-stage network based on meteorological information [J]. IEEE Transactions on Energy Conversion, 2009, 24 (2) : 474 - 482.
  • 6KUSIAK A, ZHANG Z J. Adaptive control of a wind turbine with data mining and swarm intelligence [J]. IENN ansac- tions on Sustainable Energy, 2011, 2(1):28- 36.
  • 7COPPIN P, KATZFEY J. The feasibility of wind power production forecasting in the Australian context[R]. Aspendale, Australia: CSIRO Atmospheric Research Centre, 2003.
  • 8POURMOUSAVI KANI S A, AREDHALI M M. Very short-term wind speed prediction: A new artificial neu- ral network-Markov chain model [J]. Energy Conversion and Management, 2011, 52(1) .-738 - 745.
  • 9WANG C, YAN W J. Short-term wind speed predic- tion of wind farms based on improved particle swarm optimization algorithm and neural network [C]// Inter- national conference on Mechanic Automation and control engineering. Wuhan: [s.n ], 2010:5186 - 5190.
  • 10DAMOUSIS I G, ALEXIADIS M C, THEOCHARIS J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correla- tion [J]. IEEE Trans on Energy Conversion, 2004, 19(2): 352-361.

共引文献466

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部