期刊文献+

基于三类代数曲线上的双线性对实现

Bilinear Pairing Implementation Based on Three Type Algebraic Curves
下载PDF
导出
摘要 双线性对中,最常见的是Tate对,Eta对和Ate对是Tate对的变种.针对椭圆曲线y2+y=x3+x+b,其中b∈F2,通过分类讨论,给出了4种情况下的Tate对和Eta对实现算法.同时,还提出了基于超椭圆曲线y2+y=x5+ax+b(其中a,b∈F2)上的Tate对和Ate对实现算法,以及基于超椭圆曲线y2=xp-ax-b(其中a,b∈Fp)上的Ate对实现算法.为基于双线性对密码体制的研究和应用提供了一定的参考. In pairings,the most common is the Tate pairing,Eta pairing and Ate pairing are the variations of the Tate pairing.For the elliptic curve y^2+y =x^3+x +b where b∈ F2,the implementation algorithms of Tate pairing and Eta pairing in four cases are given by discussing respectively.Meanwhile,the implementation algorithms of Tate pairing and Ate pairing based on the hyperelliptic curve y^2+y=x^5+ax+b where a,b∈F2and the implementation algorithms of Ate pairing based on the hyperelliptic curve y^2=x^p-ax-b where a,b∈Fpare proposed.It provides a reference for the research and application of the pairing-based cryptosystem.
作者 年晓宇 游林
出处 《杭州电子科技大学学报(自然科学版)》 2016年第4期20-23,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省钱江人才计划资助项目(2013R10071)
关键词 Tate对 Eta对 Ate对 椭圆曲线 超椭圆曲线 Tate pairing Eta pairing Ate pairing elliptic curve hyperelliptic curve
  • 相关文献

参考文献10

  • 1SHEN J, ZHENG W, WANG J, et al. An Efficient Verifiably Encrypted Signature from Weil Pairing[J]. Journal of Internet Technology, 2013, 14(6) :947-952.
  • 2CHANG S, KWON S, GAJ K. FPGA Accelerated Tate Pairing Based Cryptosystems over Binary Fields[C]//Field Programmable Technology, 2006. FPT 2006. IEEE International Conference on. IEEE, 2006:173-180.
  • 3GALINDO D. Chosen-ciphertext secure identity-based encryption from computational bilinear Diffie-Hellman[M]// Pairing-Based Cryptography-Pairing 2010. Springer Berlin Heidelberg, 2010: 367-376.
  • 4LED P, TAN C H. Improved Miller's algorithm for computing pairings on Edwards curves[J]. Computers, IEEE Transactions on, 2014, 63(10): 2626-2632.
  • 5GALBRAITH S D. Supersingular curves in cryptography[M]//Advances in Cryptology--ASIACRYPT 2001. Springer Berlin Heidelberg, 2001: 495-513.
  • 6CHEN C L, SHIH T F, TSAI Y T, et al. A Bilinear Pairing-Based Dynamic Key Management and Authentication for Wireless Sensor Networks[J]. Journal of Sensors, 2015:1-14.
  • 7BARRETO P S L M, GALBRAITH S, HEIGEARTAIGH C O, et al. Efficient pairing computation on supersingular Abelian varieties[J]. Designs,Codes and Cryptography, 2007,42(3) :239-271.
  • 8GALBRAITH S D, PUJOLA.s J, RITZENTHALER C, et al. Distortion maps for genus two curves[J]. Proceedings of A Workshop on Mathematical Problems & Techniques in Cryptology Crm, 2006, 3(1):46-58.
  • 9杨怡琳.超椭圆曲线上快速标量乘算法研究[D].杭州:杭州电子科技大学,2014.
  • 10施万海,游林.一类超奇异超椭圆曲线的Tate对实现[J].杭州电子科技大学学报(自然科学版),2013,33(6):33-36. 被引量:2

二级参考文献6

  • 1Joux A. A one round protocol for Diffie-Hellman[J].{H}Journal of Cryptology,2004,(4):263-276.
  • 2Galbraith S D. Supersingular curves in cryptography[M].{H}Berlin:Springer-Verlag,2001.495-513.
  • 3Duursma I,Lee H S. Tate paring implementation for hyperelliptic curves y^2=x^p-x+d[M].{H}Berlin:Springer-Verlag,2003.111-123.
  • 4Lee E,Lee H S,Lee Y. Eta Pairing Computation on General Divisors over Hyperelliptic Curves y^2=x^p-x+d[J].{H}Journal of Symbolic computation,2008,(6-7):452-474.
  • 5Jan Pelzl. Hyperelliptic cryptosystems on embedded microprocessors[D].Bochum:Ruhr-Universitat Bochum,2002.49-55.
  • 6Jan Pelzl,Thomas Wollinger,Christorf Paar. Low Cost Security:Explicit Formulae for Genus-4 Hyperelliptic Curves[M].Berlin:SpringerVerlag,2004.1-16.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部