期刊文献+

基于SOVA的固定时延咬尾卷积码译码算法

The Decoding Algorithm of Tailbiting Convolutional Code Based on SOVA
下载PDF
导出
摘要 针对咬尾卷积码最大似然译码算法复杂度过高,循环维特比算法及其低复杂度改进算法译码延迟不固定的缺点,提出了一种基于软输出维特比译码(SOVA)的咬尾卷积码译码算法,算法在降低译码复杂度的同时使译码算法保持固定的译码延迟.算法的主要思想是:在正式译码之前,采用经过修改的SOVA算法确定编码寄存器的初始状态,进而把咬尾卷积码的译码算法转化为普通卷积码的译码算法.仿真结果表明,在误比特率性能上,该算法比较接近最大似然译码算法,并且优于循环维特比译码算法. The complexity of maximum likelihood decoding algorithm for Tailbiting convolutional codes is too high.The delay of circular Viterbi algorithm and its improved algorithm of low complexity for Tailbiting convolutional codes is not fixed.In this paper,we propose a decoding algorithm based on the soft-output Viterbi-algorithm(SOVA),this algorithm reduces the decoding complexity and has a fixed decoding delay.The main idea of the algorithm is to use a modified version of the SOVA to determine the initial state of the encoding register before the formal decoding,and then transform the decoding algorithm of the Tailbiting convolutional codes into the decoding algorithm of the common convolutional code.Simulation results are close to the performance of the maximum-likelihood decoding,and better than the circular Viterbi algorithm.
出处 《杭州电子科技大学学报(自然科学版)》 2016年第4期24-28,共5页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 咬尾卷积码 软输出viterbi算法 固定时延 软信息 Tailbiting convolutional codes SOVA fixed delay soft metric
  • 相关文献

参考文献8

  • 1PAI H T, HAN Y S, WU T Y, et al. Low-complexity ML decoding for convolutional tail-biting codes[J]. Communications Letters, IEEE, 2008, 12 (12) : 883-885.
  • 2COX R V, SUNDBERG C E W. An efficient adaptive circular Viterbi algorithm for decoding generalized tailbiting convolutional codes[J]. Vehicular Technology, IEEE Transactions on, 1994, 43(1): 57-68.
  • 3SHAO R Y, LIN S, FOSSORIER M P C. Two decoding algorithms for tailbiting codes[J]. Communications, IEEE Transactions on, 2003, 51(10): 1658-1665.
  • 4MIN Z, JUNWEI H, JIE M, et al. Research on an-based decode of tail-biting convolutional codes and their performance analyses used in LTE system[C]//Information Technology and Applications, 2009. IFITAr 09. International Forum on. IEEE, 2009, 2: 303-306.
  • 5QIAN H, WANG X, KANG K, et al. A Depth-First ML Decoding Algorithm for Tail=Biting Trellises[J]. Vehicular Technology, IEEE Transactions on, 2015, 64(8) :3339-3346.
  • 6LI D, YANG J. Efficient implementation of the decoder for tail biting convolutional codes[C]//Signal Processing, Communications and Computing (ICSPCC), 2014 IEEE International Conference on. IEEE, 2014: 623-626.
  • 7FEDORENKO S V, TREFILOV M, WEI Y. Improved list decoding of tail-biting convolutional codes[C]// Problems of Redundancy in Information and Control Systems (REDUNDANCY), 2014 XIV International Symposium on. IEEE, 2014: 35-38.
  • 8王晓涛,刘振华.基于可信位置排序的咬尾卷积码译码算法[J].电子与信息学报,2015,37(7):1575-1579. 被引量:2

二级参考文献15

  • 1Wang Xiao-tao, Qian Hua, Xiang Wei-dong, et al: An efficient ML decoder for tail-biting codes based on circular trap detection[J]. IEEE Transactions on Communications, 2013, 61(4): 1212-1221.
  • 2Gluesing-Luerssen H and Forney G D. Local irreducibility of tail-biting trellises[J]. IEEE Transactions on Information Theory, 2013, 59(10): 6597-6610.
  • 3Wu T Y, Chen P N, Pai H T, et al: Reliability-based decoding for convolutional tail-biting codes[C]. IEEE Vehicular Technology Conference, Taibei, 2010: 1-4.
  • 43GPP TS. 45.003-3rd generation partnership project; technical specification group GSM/EDGE radio access network; channel coding (release 9)[S]. 2009.
  • 53GPP TS. 36.212-3rd generation partnership project; technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); multiplexing and channel coding (release 8)[S]. 2009.
  • 6Williamson A R, Marshall M J, and Wesel R D. Reliability-output decoding of tall-biting convolutional codes [J]. IEEE Transactions on Communications, 2014, 62(6): 1768-1778.
  • 7Bin Khalid F, Masud S, and Uppal M. Design and implementation of an ML decoder for tail-biting convolutional codes[C]. IEEE International Symposium on Circuits and Systems, Beijing, 2013: 285-288.
  • 8Zhu L, Jiang M, and Wu C. An improved decoding of tail-biting convolutional codes for LTE systems[C]. 2013 International Conference on Wireless Communications & Signal Processing, Hangzhou, 2013: 1-4.
  • 9Calderbank A, Forney G Jr, and Vardy A. Minimal tail-biting trellises: the Golay code and more[J]. IEEE Transactions on Information Theory, 1999, 45(5): 1435-1455.
  • 10Wang X T, Qian H, Kang K, et al: A low-complexity maximum likelihood decoder for tail-biting trellis[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 130(1): 1-11.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部