期刊文献+

AZ31镁合金轧制板材各向异性行为的晶体塑性研究 被引量:8

Study on anisotropic mechanical behavior of AZ31 Mg alloy sheet based on crystal plasticity modeling
下载PDF
导出
摘要 室温下,镁合金的主要变形机制是滑移和孪生相互竞争。为了从介观尺度准确描述这种变形机制,晶体塑性本构关系需要考虑滑移和孪生的耦合作用。基于滑移-孪生耦合的晶体塑性本构关系,本文采用代表体积单元法建立了多晶模型,并对AZ31镁合金沿RD和TD方向进行拉伸模拟分析。结果表明:沿RD方向的变形机制为基面滑移、柱面滑移、锥面滑移,沿TD方向为柱面滑移和锥面滑移。沿不同方向基面滑移对变形的贡献不同,造成AZ31镁合金轧制薄板沿RD方向的屈服强度小于TD方向,表现出强烈的力学性能各向异性。 The deformation mechanism of Mg alloy at room temperature is described by the competition of dislocation slip and twinning.In order to analysis this deformation mechanism at meso-scale, combined effects with dislocation slip and twinning should be taken into account in crystal plasticity modeling. Therefore, based on crystal plasticity model combined with slip and twinning effects, a polycrystalline model was built based on Representative Volume Element (RVE) method and simple tension along rolling direction (RD) and transverse direction (TD) of AZ31 rolling sheet was discussed.It is found that basal slip, prismatic and pyramidal slips are the main deformation mechanism along RD direction, while prismatic and pyramidal slips along TD direction.Different contribution of basal slip to the deformation leads to the strong anisotropic behavior, lower yield strength along RD than that along TD direction.
出处 《燕山大学学报》 CAS 北大核心 2016年第2期123-129,共7页 Journal of Yanshan University
基金 国家自然科学基金资助项目(51401178) 河北省自然科学基金资助项目(E2015203009) 人力资源和社会保障部留学归国人员择优资助项目(CG2014003004) 河北省高等学校科技研究项目(BJ2016054)
关键词 AZ31变形镁合金 晶体塑性本构 滑移/孪生 各向异性 基面滑移 AZ31 wrought Mg alloys crystal plasticity constitutive model dislocation slip/twinning anisotropy basal slip
  • 相关文献

参考文献21

  • 1Frankel G S. Magnesium alloys: Ready for the road [J]. Nature Materials. 2015, 14:1189-90.
  • 2刘庆.镁合金塑性变形机理研究进展[J].金属学报,2010,46(11):1458-1472. 被引量:160
  • 3Roters F, Eisenlohr P, Hantcherli L, et al.Overview of constitutive laws. kinematics, homogenization and muhiscale methods In crystal plasticity finite-element modeling: Theory, experiments, applications [J].Acta Materialia. 2010, 58(10) : 1152-1211.
  • 4王娜,雷丽萍,方刚,曾攀.镁合金变形的晶体塑性有限元分析[J].稀有金属,2008,32(6):766-773. 被引量:12
  • 5Tome C N, Lebensohn R A, Kooks U. F. A model for texture development dominated by deformation twinning: Application to zirconium alloys [J]. Acta Metallurgica et Materialia, 1991, 39 ( 11) : 2667-2680.
  • 6Lebensohn R A, Tome C N.A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystah Application to Zirconium alloys [J]. Acta Metallurgica et Matrialia, 1993, 41 (9) : 2611-2624.
  • 7Choi S H, Kim D H, Lee H W, et al.Simulation of texture evolution and macroscopic properties in Mg alloys using the crystal plasticity finite element method [J]. Materials Science and Engineering A, 2010, 527(4/5) : 1151-1159.
  • 8唐伟琴,李大永,彭颖红.AZ31镁合金板材冲压成形制耳的晶体塑性模拟[J].中国有色金属学报,2014,24(8):1933-1940. 被引量:4
  • 9Praksh A , Weygand S M, Riedel H. Modeling the evolution of texture and grain shape in Mg alloy AZ31 using the crystal plasticity finite element method [J]. Computational Materials Science, 2009, 45(3) : 744-750.
  • 10Wang X M, Xu B X, Yue Z F. Micromechanical modelling of the effect of plastic defor,nation on the mechanical behaviour in pseudoetastic shape memory alloys [J]. International Journal of Plasticity, 2008, 24(8) : 1307-1332.

二级参考文献195

共引文献315

同被引文献68

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部