期刊文献+

小波-神经网络混合模型预测地下水水位 被引量:6

A Wavelet-ANN Hybrid Model for Groundwater Level Forecasting
下载PDF
导出
摘要 由于过量开采地下水,华北平原的许多城市出现地下水水位持续下降趋势,由此导致了许多严重的环境问题,如地下水枯竭、地面沉降和海水入侵等。为了准确预测城市地下水水位变化,利用小波变换的多尺度分析特征,建立了小波-神经网络混合模型(以下简称"混合模型"),并研究了其在地下水水位预测中的精度。利用北京市平谷区地下水水位观测资料,分别用BP网络和混合模型对该区地下水水位进行了预测。采用均方根误差(RMSE)、平均绝对误差(MAE)和线性相关系数(R)对模型预测的精度进行度量。预测结果表明:混合模型第1至第3个月的地下水水位平均绝对误差分别是0.535,0.598和0.634 m;而BP模型的平均绝对误差分别为0.566,0.824和0.940 m。混合模型的预测误差分别为BP模型的95%,73%和67%。使用混合模型能明显提高预测的精度,显著增加有效预测时段长度。 Due to over-exploitation of groundwater in many cities of North China Plain,there is a tendency of lasting decrease in groundwater level,which results in serious problems,such as groundwater exhaustion,land subsidence and seawater intrusion. In order to accurately predict changes of urban groundwater level,based on artificial neural network( ANN) and analysis of multi-scale of wavelet transform( WT),we established a wavelet-ANN conjugate model and test its accuracy to predict groundwater level. Measured data of groundwater level at Pinggu district of Beijing were taken as research objects. We predicted groundwater levels at the district by back propagation( BP)model and hybrid model. Then,we calculated the prediction accuracy by using statistical parameters including root mean square error( RMSE),mean absolute error( MAE) and correlation coefficient( R). Results showed that the MAE of the hybrid model from the first month to the third month was 0.535,0.598 and 0.634 m,respectively,whereas 0.566,0.824 and 0.940 m for BP model. The MAE of hybrid model from the first month to the third month was 95%,73% and 67% of that of BP model,respectively. Comparison of results reveals that the hybrid model has advantages of better prediction accuracy and longer effective prediction duration.
出处 《长江科学院院报》 CSCD 北大核心 2016年第8期18-21,共4页 Journal of Changjiang River Scientific Research Institute
基金 国家自然基金青年基金项目(41206037) 河南省教育厅科技攻关项目(14B170011) 郑州市科技发展计划项目(131PPTGG414-7) 河南工程学院博士基金项目(D2012004)
关键词 华北平原 过量开采 地下水水位 离散小波变换 人工神经网络 预测 North China Plain over-exploitation groundwater level discrete wavelet transform artificial neural network forecasting
  • 相关文献

参考文献8

二级参考文献14

共引文献52

同被引文献92

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部