期刊文献+

基于梯度保真项的低剂量CT统计迭代重建算法 被引量:1

Statistical Iterative Reconstruction Algorithm Based on Gradient Fidelity for Low-dose CT
下载PDF
导出
摘要 针对低剂量计算机断层扫描(Computed Tomography,CT)重建图像时容易出现明显条形伪影这一现象,提出一种基于梯度保真项的低剂量CT统计迭代重建算法。该算法克服了原始全变分(Total Variation,TV)模型在抑制条形伪影和噪声的同时引入阶梯效应的缺点,首先把梯度保真约束项和能够区分图像平滑区和细节区的边缘指示函数应用到TV模型中得到基于梯度保真项的自适应全变分模型,然后再把新模型与惩罚加权最小二乘(Penalized Weighted Least Square,PWLS)重建算法相结合,使用交替方向迭代法得到最终的图像。采用Shepp-Logan模型来验证算法的有效性,实验结果表明,该算法不仅可以有效地去除条形伪影,还可以较好地保护图像的边缘和细节信息。 For the phenomenon of obvious streak artifacts when the low-dose computed tomography( CT) reconstructs images,a low-dose CT statistical iterative reconstruction method based on gradient fidelity term is presented. This method overcomes the shortage that as the traditional total variation( TV) suppress streak artifacts and noises; it has to bring staircase effect at the same time. Firstly,the paper applies the gradient fidelity constraint entry and the edge indicator function which can distinguish image smoothing area and detail area to the TV model,and then it gets adaptive total variation model based on gradient fidelity term. After that,it combines the new model with the penalized weighted least square( PWLS) and gets the final image by using alternating direction iteration method.The Shepp-Logan model is used to verify the effectiveness of this algorithm. The experimental results show that the proposed algorithm can not only reduce the streak artifacts effectively,but also preserve the image edges and details information very well.
作者 张旭
出处 《山西电子技术》 2016年第4期45-47,共3页 Shanxi Electronic Technology
关键词 低剂量计算机断层扫描 全变分 惩罚加权最小二乘 梯度保真项 边缘指示函数 low-dose computed tomography total variation penalized weighted least square gradient fidelity term edge indicator function
  • 相关文献

参考文献9

  • 1ZHANG H,MA J H,WANG J,et al. Statistical Image Re- construction for Low-dose CT Using Nonlocal Means- based Regularization. Part II : An Adaptive Approach [ J ]. Computerized Medical Imaging and Graphics ,2015,43:26 -35.
  • 2U Q, YU H Y, MOU X Q, et al. Low-dose X-ray CT Re- construction Via Dictionary Learning [ J ]. Medical Ima- ging, IEEE Transactions on ,2012,31 (9) : 1682 - 1697.
  • 3WANG J, LIT F, LU H B, et al. Penalized Weighted Least-squares Approach to Sinogram Noise Reduction andImage Reconstruction for Low-dose X-ray Computed Tomography [ J ]. Medical Imaging, IEEE Transactions on, 2006,25 (10) : 1272-1283.
  • 4DUAN X H,ZHANG L, XING Y X, et al. Few-view Pro- jection Reconstruction with an herative Reconstruction Reprojection Algorithm and TV Constraint [ J ]. Nuclear Science, IEEE Transactions on Medical Imaging,2009,56 (3) :1377 - 1382.
  • 5ZHU Y, ZHAO M, et al. Noise Reduction with low Dose CT Data Based on a Modified ROF Model[J]. Optics Ex- press,2012,20(16) :17987 - 18004.
  • 6Tang J, Nett B E, Chen G H. Performance Comparison Be- tween Total Variation-based Compressed Sensing and Sta- tistical herative Reconstruction Algorithms [ J ]. Phys Med Biol,2009,54:5781 - 5804.
  • 7张洁,杨文国.一种基于梯度保真项的图像去噪法[J].计算机应用与软件,2009,26(11):243-245. 被引量:1
  • 8LU X Q,SUN Y, YUAN Y,et al. Image Reconstruction by an Alternating Minimization [ J ]. Neuro Computing, 2011, 74(5) :661 -670.
  • 9ELBAKRI I,FESSLER J. Statistical Image Reconstruction for Polyenergetic X-ray Computed Tomography [ J ]. IEEE Trans Med Imag,2002,21:89 - 99.

二级参考文献7

  • 1Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [ J ]. IEEEtrans. on Patt. Anal. and Mach. Intell. , 1990,12 ( 7 ) : 629 - 639.
  • 2Whitaker R, Pizer S. A mufti-scale approach to nonuniform diffusion. Computer Vision, Graphics, and Image Processing [ J ]. Image Understanding, 1993,57 ( 1 ) :99 - 110.
  • 3You Y L, Xu W, Tannenbaum A, et al. Behavioral analysis of anisotropic diffusion in image processing[ J]. IEEE Transactions on Image Processing. 1996,5 ( 11 ) : 1539 - 1553.
  • 4Weickert J. A Review of Nonlinear Diffusion Filtering [ J 1. Proceedings of the First International Conference on Scale-Space Theory in Computer Vision, 1997,1252:3 - 28.
  • 5Rudin L, Osher S, Fatemi E. Nonlinear Total Variation based noise removal algorithms [ J ]. Physica D, 1992 ( 60 ) :259 - 268.
  • 6Bruhn A, Weickert J, Fedderm C, et al. Variational Optical Flow Computation in Real Time [ J]. IEEE Transactions on Image Processing, 2005,14(5) :608 -615.
  • 7蒋先刚,罗文俊.基于各向异性扩散的图像平滑与分割技术研究[J].微计算机信息,2007(05X):313-314. 被引量:2

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部