摘要
证明了R(x)=R[x]/〈x^(p^k)-(1+αu)〉不是主理想环,其中R=F_(p^m)+uF_(p^m)+vF_(p^m),u^2=0,v^2=0,uv=vu=0且α∈F_(p^m)*。分5种情形讨论了环R(x)中的理想,给出了R上长为p^k的(1+αu)-常循环码的可以唯一确定的生成元的表达形式。利用环同构,得到了R上长为pk的(β+γu)-常循环码的可以唯一确定的生成元的表达形式,其中β,γ∈F_(p^m)*。
R ( x ) = R [x ]/( xpk - ( 1 +αu ) ) is not a principal ideal domain was proved in the paper, whereR = Fpm +uFpm +VFpm with u2 = 0,v2 = 0,uv= vu = 0 andα∈Fpm*. Then, the ideals of R ( x ) were discussed in five cases and the expressions of the uniquely determined generators of the ( 1 + αu) -constacy- clic codes were given. Finally, one to one correspondences between ( 1 + αu) -constacyclic codes and (β+γu)-constacyelic codes were provided via ring isomorphism, which allow us to carry over the results about (1 + αu)-eonstacyclic codes accordingly to (β+γu)-constacvclic codes.
出处
《蚌埠学院学报》
2016年第4期32-35,共4页
Journal of Bengbu University
基金
安徽省自然科学基金项目(1508085MC55)
关键词
环上码
常循环码
理想环
重根码
codes over rings
constacyclic codes
ideal ring
repeated-root codes